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Introduction

Unfortunately my Novena laptop got physically damaged, so I took the SSD (Solid-State-Disk) 
from the Novena to a data-recovery company, who analyzed the SSD and discovered that the SSD 
has a problem in its startup phase that is most likely due to a firmware corruption, but the physical 
damage is actually not a problem for the SSD.
According to the company it is very likely that all other Novena SSDs (in Laptops, Desktops and 
Heirlooms) with the same firmware have the same problem and might also loose data.
Therefore I started to work on analyzing the firmware, and the firmware update process.

I have created the following guideline how you can extract and verify the firmware from your SSD, 
so that we can find out together, which models are actually affected.
I will try to explain what you can do to protect your own SSD, or recover if the same or a similar 
problem happens to your SSD.

What you should do now:
* Backup your data! But not to a SSD. SSDs seem not to be very well suited for backups from my 
point of view, I would suggest to use HDDs (Hard-Disk-Drive) instead.

What you should do when such a problem happens to your SSD:
Check back here, perhaps we have a solution for it already.
If you need urgent access to your data, search for a data recovery company that has a PC-3000 SSD 
from AceLabs available, at the moment of this writing, I think it is likely that they could recover 
your data with it.

This is how the problem of my SSD looks like from the kernel point of view (the following is the 
output from the “dmesg” command under Linux):

[    1.203395] ahci-imx 2200000.sata: fsl,transmit-level-mV value 1025, using 
00000024
[    1.203432] ahci-imx 2200000.sata: fsl,transmit-boost-mdB value 0, using 
00000000
[    1.203464] ahci-imx 2200000.sata: fsl,transmit-atten-16ths value 8, using 
00002800



[    1.203494] ahci-imx 2200000.sata: fsl,receive-eq-mdB not specified, using 
05000000
[    1.203543] ahci-imx 2200000.sata: Looking up target-supply from device tree
[    1.206436] ahci-imx 2200000.sata: SSS flag set, parallel bus scan disabled
[    1.206494] ahci-imx 2200000.sata: AHCI 0001.0300 32 slots 1 ports 3 Gbps 0x1
impl platform mode
[    1.206531] ahci-imx 2200000.sata: flags: ncq sntf stag pm led clo only pmp 
pio slum part ccc apst 
[    1.208050] scsi host0: ahci_platform
[    1.208473] ata1: SATA max UDMA/133 mmio [mem 0x02200000-0x02203fff] port 
0x100 irq 71
[...]
[    6.592593] ata1: link is slow to respond, please be patient (ready=0)
[   11.212587] ata1: COMRESET failed (errno=-16)
[   16.602585] ata1: link is slow to respond, please be patient (ready=0)
[   21.222578] ata1: COMRESET failed (errno=-16)
[   26.612582] ata1: link is slow to respond, please be patient (ready=0)
[   56.252588] ata1: COMRESET failed (errno=-16)
[   56.261143] ata1: limiting SATA link speed to 1.5 Gbps
[   61.292587] ata1: COMRESET failed (errno=-16)
[   61.301345] ata1: reset failed, giving up
[   61.310158] ahci-imx 2200000.sata: no device found, disabling link.
[   61.319008] ahci-imx 2200000.sata: pass ahci_imx..hotplug=1 to enable hotplug

So it seems the SATA (Serial AT Attachment) host tries to initiate the communication with 
COMRESET (somewhere between second 1.206531 and second 1.208473), but it never receives 
the COMINIT answer the SSD should give. 5 seconds later at second 6.592593 is complains that 
there is still no answer and a minute later at second 61.301345 it gives up. Theoretically the 
COMINIT should come within a second after the COMRESET.
If you are interested in the details of the SATA protocol, I can recommend this presentation:
http://de.slideshare.net/niravdesai7121/sata-protocol 
On page 30 you can see the timing of COMRESET and COMINIT. The SATA host (computer) 
should start with COMRESET, and the SSD should reply with COMINIT. 
Afterwards they can calibrate, negotiate the speed, … and then they have a “link”.

From OCZ SSDs I have heard that they have some kind of panic lock, where the SSD stops booting
to prevent further damage when it discovered a potential problem. This behaviour on OCZ SSDs is 
often triggered when waking up a Laptop from hibernation. It could be that this is an instance of a 
similar panic lock for Samsung SSDs.

Layer 0 - Physical layer

Ok, let's start with the physics. 
The SSD is contained in a metal case, to open it you have to open 3 screws, one of
them is visible, the other 2 are behind the plastic sticker. 
The screw has a Pentalobe format, so you need a Pentalobe screwdriver. 
I found a working one in the https://www.ifixit.com/Store/Tools/64-Bit-Driver-Kit/
IF145-299-1 
(It's a bit funny that you need a 64 Bit Driver kit to access a 32 Bit CPU ;-)
When you have opened it, the SSD PCB (Printed-Circuit-Board) should look like
the one on the upper right hand side of this image:

Image 1: 
Pentalobe

http://de.slideshare.net/niravdesai7121/sata-protocol
https://www.ifixit.com/Store/Tools/64-Bit-Driver-Kit/IF145-299-1
https://www.ifixit.com/Store/Tools/64-Bit-Driver-Kit/IF145-299-1
https://www.ifixit.com/Store/Tools/64-Bit-Driver-Kit/IF145-299-1


So what do we have here?
The long thing on the upper 
end is the SATA connector, the
big square chip on the bottom 
left is the controller CPU, in 
the middle we have some 
SDRAM and on the right side 
is the actual NAND Flash 
storage chip. 

On the back side is the second 
NAND Flash chip in the same 
location (I guess that makes it 
easy to route the traces, 
perhaps the address lanes are 
shared)
Another thing that strongly 
suggests to put 2 NAND Flash
chips on directly opposite 

sides of a PCB is the temperature sensing. You want a connection that is as short as possible from 
the temperature sensor to the NAND flash chips where the temperature has to be measured. The 
easiest way to achieve that is by placing the NAND flash chips at the same location, and the 
temperature sensor directly next to both of them. (The temperature connection is done by the 
ground plane in the PCB or a very wide trace)

The controller CPU (the one one the left side of the image) is called Samsung MEX (the product 
number is S4LN045X01-8030), it has 3 ARM Cortex R4 cores, which are based on the ARMv7-R 
architecture, and likely have about 400 MHz. MEX is the fifth generation of the chip, MAX was the
first one, MBX the second one, ...
The following things are written on the controller CPU:
SAMSUNG S4LN045X01-8030
N7Y89MMB
U1441 ARM → 1441 means it was produced in the year 2014/Week 41
It is said to have an 8 channel controller, if you want to learn more about what that means, I suggest 
the following page:
http://www.cactus-tech.com/en/resources/blog/details/solid-state-drive-primer-8-controller-
architecture-channels-and-banks 

The SDRAM chip:
Samsung 512 MB Low Power DDR2 SDRAM
Samsung, 4Gb, LPDDR2 SDRAM, 1CH x 32, 8 banks, 134-FBGA, MONO, 1066Mbps, 
1.8V/1.2V/1.2V:
512MB LPDDR2 DRAM:
The following things are written on it:
SAMSUNG 440
K4P4G324EQ-FGC2
K:=Memory
 4:=DRAM
  P:=LPDDR2 (guess)
   4G:=4G, 8K/64ms Density
     32:=x32 Bit Organisation

SATA Connector

Controller

NAND
Flash

RAM

JTAG

UART

http://www.cactus-tech.com/en/resources/blog/details/solid-state-drive-primer-8-controller-architecture-channels-and-banks
http://www.cactus-tech.com/en/resources/blog/details/solid-state-drive-primer-8-controller-architecture-channels-and-banks


    4:=8 internal Banks 
     E:=Interface ?
    Q:=SSTL-2 1.8V VDD, 1.8V VDDQ
     -F:=7th Generation

      G:=FBGA Package
             C:=Commercial, Normal Temperature&Power range (0-
95°C)
EXH382HCC

And now the NAND chips that actually hold your data:
NAND TLC 128 GB:    (19nm Toggle Mode 2.0 TLC (3-bit per cell) NAND (Model# 
K90KGY8S7M-CCK0))
SAMSUNG 440
K90KGY8S7M-CCK0
K:=Memory
 9:=NAND Flash
  0:=3-Bit MLC (TLC)
   KG=128G
     Y8=Organisation x8?
       S=Voltage ?
        7=Mode ?
         M=1st Generation
           C=CHIP BIZ D : 63-TBGA
            C=Commercial, Normal(0°C-95°C) & Normal Power
             K=Customer Bad Block ?
              0=Pre-Program Version:None

I measured the voltages and connectivity of a very similar PCB which uses the same Controller and 
slightly different Flash chips to create a pinout:
http://www2.futureware.at/~philipp/ssd/K9CHGY8S5M-CCK0-Pinout.pdf 
The chip has 0.8mm pitch and BGA-316 form factor.

http://www2.futureware.at/~philipp/ssd/K9CHGY8S5M-CCK0-Pinout.pdf


The only product selection guide that contained relevant information that I could find was from 
2010, so it did not contained all variations, but it is still a helpful guide to understand Samsung´s 
naming conventions:
http://www.samsung.com/global/business/semiconductor/file/media/SamsungPSG_july2010_final-
2.pdf  - Page 16
If anyone can provide any further information to explain the variations we have here, I would be 
interested to hear.

Unfortunately at first I couldn't find datasheets for any of the other chips used on the SSD.

There are a few smaller chips on the PCB: JS4TAA and AKE4QD, "ABS 431 .WD"
There is also a Chip named "GUILL TI 48" on it, which is from Texas Instruments
https://chipworks1.force.com/DefaultStore/ccrz__ProductDetails?
viewState=DetailView&cartID=&sku=TEX-GUILL_PKG_2&store=DefaultStore 

fzabkar from forum.hddguru.com has identified the chips and provided the following information:

https://chipworks1.force.com/DefaultStore/ccrz__ProductDetails?viewState=DetailView&cartID=&sku=TEX-GUILL_PKG_2&store=DefaultStore
https://chipworks1.force.com/DefaultStore/ccrz__ProductDetails?viewState=DetailView&cartID=&sku=TEX-GUILL_PKG_2&store=DefaultStore
http://www.samsung.com/global/business/semiconductor/file/media/SamsungPSG_july2010_final-2.pdf
http://www.samsung.com/global/business/semiconductor/file/media/SamsungPSG_july2010_final-2.pdf


“The mystery components appear to be marked especially for Samsung. 
JS4TAA appears to be a 5V STEF4S electronic fuse manufactured by 
STMicroelectronics. "JS4" appear to be the important characters in the part number.
GUILL is a TPS62130D2 synchronous step-down DC-DC converter manufactured by 
Texas Instruments.
AKE40D appears to be a multiple-output switchmode DC-DC converter, probably with 
integrated power sequencing. "AKE" appear to be the important characters in the part 
number.
I'm guessing that the ABS part is an SPI flash memory.”

The ABS part is actually not a SPI flash, but a I2C device, and my current guess is that it is the 
temperature sensor, similar to those devices:
http://www.ti.com/lit/ds/symlink/tmp275.pdf 
http://www.nxp.com/documents/data_sheet/LM75A.pdf 
http://ww1.microchip.com/downloads/en/DeviceDoc/25095A.pdf 
I logged the following I2C communication with an Oscilloscope:
I2C
Time,Dir,ID,Data,ACKed,
1.0870288E-01,Write,18,08 02,Y,
1.0890320E-01,Write,18,00,Y,
1.0903376E-01,Read,18,00 77,N,
1.0923408E-01,Write,18,01 02 29,Y,
1.0949680E-01,Write,18,04 05 50,Y,
1.0975952E-01,Write,18,04,Y,
1.0989008E-01,Read,18,05 50,N,
1.1008976E-01,Write,18,02 05 00,Y,
1.1035280E-01,Write,18,02,Y,
1.1048336E-01,Read,18,05 00,N,
1.1068304E-01,Write,18,03 04 B0,Y,
1.1094608E-01,Write,18,03,Y,
1.1107664E-01,Read,18,04 B0,N, 

On (another?) SSD I got the following I2C traffic for every Smart command:
Write 0x30 Data 05h
Read 0x31 Data 22h 2Ch 
So 0x05 is obviously the command to read out a single temperature value, and for the temperature 
values we read, we got the following table:
22 A8 = 42°C 
22 88 = 40°C
22 48 = 36°C 
22 3C = 35°C
22 38 = 35°C
22 34 = 35°C
22 2C = 34°C
22 28 = 34°C
22 20 = 34°C
22 20 = 34°C
22 20 = 34°C
22 24 = 34°C
22 1C = 33°C
22 1C = 33°C
22 18 = 33°C

http://ww1.microchip.com/downloads/en/DeviceDoc/25095A.pdf
http://www.nxp.com/documents/data_sheet/LM75A.pdf
http://www.ti.com/lit/ds/symlink/tmp275.pdf


With the 2 constants 0x30 followed by 0x31 I was able to identify the I2C code in the firmware.

On the various SSDs from Samsung the ABS part, or a similar chip is always located directly 
besides the Flash chips on the PCB, which is necessary to measure the temperature. (You could put 
a SPI flash anywhere on the board)

I found the following document which explains the thermal management strategy of Samsung with 
their newer 950 series starting at page 13:
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/
Samsung_SSD_950_PRO_White_paper.pdf
So the thermal management that is used in the EVO840 is likely similar but not that advanced.
                               
Later on the actual “ABS” chip was found by fzabkar:
MCP9844T-BE/MNY, Microchip, +/-1 degC, 1.8V Digital Temperature Sensor, marking ABS, 
TDFN-8:
http://ww1.microchip.com/downloads/en/DeviceDoc/20005192B.pdf 

Layer 1 - Link layer

SSD's need to be electrically powered, this one needs to be powered through the SATA port.
At first I used a USB-SATA adapter for supplying power.
                                                                               
One relevant topic regarding the power-supply is the grounding for the JTAG port:
I tried to attach the USB-SATA adapter to the USB power of a secondary laptop, and there I 
measured a nearly constant 2 Volt difference between the GND (ground) of the SSD and the GND 
of the Novena.
The signal level of the GPIOs of Novena is 3.3 Volts, so I thought that +- 2 Volts could be too much 
for proper signaling reception.
When I plugged the USB adapter into a USB port of the Novena, both Novena and SSD had the 
same GND level (0 Volt difference).
The downside of the USB-SATA adapters is that you do not get access to the initialization 
communication so PCI SATA adapter or SoC is preferred if you want to analyze the SATA behavior.

I powered the SSD and measured all the voltages on all the Pins I could find, first on a good SSD, 
documented on printed up-scaled photos and then verified them on my broken SSD, and the 
voltages were all OK.

The voltages on the SATA Data pins were identical too, so I have some more confidence that the 
problem is not a physical problem of the SATA interface, and that all the power-management is 
good.

You can measure the power with a multi-meter on various places. Make sure that you configure 
your multi-meter correctly to read voltages, and that you always touch only a single pin, that you do
not short out 2 pins next to each other. When you have sharp probe heads, make sure you do not 
push too hard on the pins, to not squish the pins!

http://ww1.microchip.com/downloads/en/DeviceDoc/20005192B.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/Samsung_SSD_950_PRO_White_paper.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/Samsung_SSD_950_PRO_White_paper.pdf


I have created a separate PDF with both front-side and backside images where you should be able to
better zoom in so that you can look at the details:
http://www2.futureware.at/~philipp/ssd/SamsungEVO840Voltages.pdf 

Later on I took an Arduino with a 4-Relais shield and connected 2 power cables to it, so that I can 
switch on/off the SATA power supply (one relais for the 5V rail and one relais for the 12V rail, and 
finally one relais for the Safe-Mode) programmatically by sending switch on/off commands to the 
Arduino. Nowadays I would recommend a dedicated USB relais board with at least 4 ports, I don’t 
like the connection between the Arduino and the relais board, it isn’t very stable.
Controlling the SATA data port was done later on by using a USB-SATA converter connected to the 
USB port on the Novena, which can be controlled with the novena-usb-hub tool. (It enables/disables
the power supply to the USB port)

SAFE

http://www2.futureware.at/~philipp/ssd/SamsungEVO840Voltages.pdf


JTAG
Now regarding the JTAG interface:
I found the JTAG pinout of the Samsung SSD on Twitter: 
https://twitter.com/bsmtiam/status/623241828033114112 
(Thanks a lot to bsmtiam!)
I found some more pins on the board:
There are 2 pins right next to the JTAG interface (which I marked 0V, 1.8V TRST on the second 
photo). The one next to the JTAG pins is a RESET line (TRST/RESET).

Later on I found that ACE Laboratory (makers of PC-3000) figured out the 4 pins next to JTAG: 
The 2 pins right next to the JTAG (0V, 1.8V) pins are activating the “SAFE Mode” when shorted. 
The other 2 pins (marked 1,815 V and 1,819V) are a UART port, which provides debugging 
functionality in SAFE Mode.

The big round connectors are GND.
On the other side, next to the CPU (big quadratic chip), there are 6 Test_Pins which I number the 
following way:
Pin#1 would be the one nearest to the SATA connector, PIN#6 is the one farthest away from the 
SATA connector.
Pin#1 is connected to a pin of an unpopulated footprint nearby. Pin#1 has 1.816V voltage (and 
7MegaOhm to GND), the same is on the connected pad of the unpopulated footprint nearby. The 
other pad of the unpopulated footprint has 0V voltage and is connected with GND. (So the 
unpopulated footprint is likely for a Pull-Down Resistor or a Capacitor)
Pin#5 is connected to the "Optional" pin on the SATA power connector. This is likely a GPIO from 
the CPU. See http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/
Samsung_SSD_845DC_01_Device_Activity_Signal_DAS.pdf 

Now where to get a JTAG adapter?
Well, the Novena has a few GPIOs that are pinmuxed (multiplexed) with the serial ports and are 
easily accessible:
https://www.kosagi.com/w/index.php?title=Novena_headers_to_linux_GPIO_mappings 

I wanted to use the Novena as a JTAG master without a SATA disk, so that I could plug the disk-
under-test into the SATA port if I wanted too, so I took a spare 4GB MicroSD card and installed 
the standard Novena image on it: http://repo.novena.io/novena/images/novena-mmc-disk-r1.img 
I learnt about the pinmuxing in Linux called PINCTRL 
(https://www.kernel.org/doc/Documentation/pinctrl.txt), and learnt that it is defined in the device-
tree.
I tried out the pins, and found that only 2 of the documented pins were actually usable as GPIOs, 
the other pins were not configured in the device-tree.
So I tried to update the kernel from the repository ( https://www.kosagi.com/w/index.php?
title=Updating_novena_repo_key  ) to the current 4.4 kernel, which also came with a new device-
tree configuration, and suddenly I could drive 4 of the pins as GPIOs, which is sufficient for basic 
JTAG access.

If you have a Samsung 840 EVO but you do not have a Novena board, you can also use/buy a cheap
Altera USB Blaster which is about 3 times slower than the Novena with sysfsgpio.
I also bought various other JTAG interfaces which did not work: In-Circuit Open-OCD, BAITE 
JTAG ICE, Raspberry Pi 3, OLIMEX ARM-USB-OCD-H all did not work. The Raspberry Pi3 
showed signal integrity issues that might possibly be overcome with an improved driver.

https://www.kosagi.com/w/index.php?title=Updating_novena_repo_key
https://www.kosagi.com/w/index.php?title=Updating_novena_repo_key
https://www.kernel.org/doc/Documentation/pinctrl.txt
http://repo.novena.io/novena/images/novena-mmc-disk-r1.img
https://www.kosagi.com/w/index.php?title=Novena_headers_to_linux_GPIO_mappings
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/Samsung_SSD_845DC_01_Device_Activity_Signal_DAS.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/Samsung_SSD_845DC_01_Device_Activity_Signal_DAS.pdf
https://twitter.com/bsmtiam/status/623241828033114112


So for the Novena, you need the following OpenOCD configuration:
interface sysfsgpio
transport select jtag
# Each of the JTAG lines need a gpio number set: tck tms tdi tdo
sysfsgpio_jtag_nums 163 16 162 20

Then I wanted to try the RESET line, so I needed 1 or 2 more GPIOs. I changed the Device-Tree to 
pinmux the lines from UART to GPIO, 
and documented everything on the Wiki:
https://www.kosagi.com/w/index.php?title=Novena_as_JTAG_adapter 

One problem I found out later on is that Novena and Raspberry Pi GPIOs are somewhat slow, and 
that you might want to try faster JTAG adapters. With my Novena and OpenOCD I was able to read
memory with 6 Kbyte/second. With the newer imx_gpio driver, it is raised to 8 Kbyte/second. I 
added a toggle command into OpenOCD and improved it to 13KB/s. The bottleneck with sysfsgpio 
is the Linux Kernel API for GPIOs, where you need 2 syscalls per toggle. Creating a faster Kernel 
interface and perhaps DMA accelerating the GPIOs should speed it up a lot. If anyone could 
implement that in the Linux kernel and in OpenOCD, that would be great.
Later on I bought and tried several other JTAG interfaces, but I had a lot of troubles with them, the 
Samsung SSDs seem to be very picky about signal integrity and voltages (1.8V!!!). So far, Novena 
and Altera USB Blaster (the normal ones, a Revision C marked one did not work for me) are still 
the only reliable JTAG adapters for Samsung SSDs.

Safe Mode
I found a product called PC-3000 on the market for data recovery that is able to recover data from 
Samsung SSD’s: http://www.acelaboratory.com/pc3000-SSD.php through the SATA interface.

When you click on “Video Tutorials” and watch the Samsung video, it shows that you have to 
shorten 2 pins on the PCB and then power on the SSD to get the SSD into “Safe Mode”. Several 
weeks later I found a better video:

http://blog.acelaboratory.com/pc-3000-ssd-samsung-family.html 

The RESET line has to be shorted to the pin next to it during powerup, and afterwards there is a 
UART available on the other 2 pins.

From what I have read, back in the HDD world, Safe-Mode meant that the harddisk would not 
power up the motors to actually read/write on the harddisk, so you could safely talk to the HDD 
controller chip about it’s firmware, without risking any power problems.
It was not quite clear for me, what Safe-Mode could actually mean for a SSD.
After some playing around with SAFE-Mode, I found out it means the following:
* Only the first Core mex1 is activated, mex2 and mex3 are unpowered in SAFE-Mode, which hints
that in normal (non-SAFE) mode, mex1 is responsible for waking up mex2 and mex3 likely 
somewhere at the end of the initialisation.
* The SSD claims to have about 500 MB size, not 250 GB anymore, which resembles the RAM size
in the SSD, so you most likely get direct access to the RAM this way (which is where the is read 
from/to on the way to the Flash). Reading anything didn’t gave me any of the original contents, so it
also seems as if the Flash isn’t mounted, the Flash encryption is not active, …
* It always has the serial number SN000000000000, so it obviously tries not to read anything from 
the configuration that is stored in the Flash, so that it cannot crash during the initialisation due to 
garbage in the configuration memory.

http://blog.acelaboratory.com/pc-3000-ssd-samsung-family.html
http://www.acelaboratory.com/pc3000-SSD.php
https://www.kosagi.com/w/index.php?title=Novena_as_JTAG_adapter


On the ARM side of things, I found that there is a Processor PIN called VINITHI that is 
read(sampled) once during boot, which decides, whether the CPU should boot from the address 
0x00000000 or from the address 0xFFFF0000. So theoretically this ARM Pin could be the Safe 
Mode pin, so that it boots from a different code there. But I did not see any memory available at 
0xFFFF0000 during any of my traces, so this option seems to be unlikely. It could be that there is 
some memory mapped at 0xFFFF0000 during boot and unmapped again by the boot code, but I did 
not saw any hints about that yet, so I think that is not the method used for booting.
So if the Safe-Mode exists (yes, it does) on EVO 840 – 250 GB, and it is not the Processor Pin to 
run at 0xFFFF0000, then I think it would have to be a GPIO and the firmware would have to branch
depending on the GPIO afterwards, which would be read by the Firmware during booting.
It finally turned out that the Safe-Mode pin is actually just one of many GPIO pins (UART, I2C), 
which is sampled by the first stage bootloader.

From the physical point of view: Since there are no >3 Volt Test-Pins available anywhere on the 
board, the connection between the 2 pins would likely have to pull the GPIO down to GND. To be 
able to measure a grounded Pin and to differentiate it from a free floating pin, a voltage has to be 
applied, something like 1.8 V would be what I would expect there.
If this voltage is only applied during booting, then an oscilloscope with triggering is needed to 
analyze it.

Layer 2 - Firmware

At first I searched on the Internet for Firmware updates.
On the Samsung website there is only the current firmware update available. But searching on the 
internet some more, I was also able to find previous firmware updates.

This is the current Firmware history I compiled:
1: EXT0AB0Q (~2013-07) (Original firmware, I could not find it on the internet)
2: EXT0BB0Q (2013-10)
3: EXT0BB6Q (2013-12-18 19:43) (currently available on the Samsung website)
4: EXT0CB6Q (2014-10-10 19:36) This is included in the 
Samsung_SSD840EVO_Performance_Restoration.zip
5: EXT0DB6Q (2015-03-27 18:35)

When you download the ISO image to update the firmware you get a file like this:
Samsung_SSD_840_EVO_EXT0BB6Q.iso
Inside the file there is the isolinux/btdsk.img , which can be unpacked with 7-Zip.
Inside the btdsk.img there are 3 interesting files:
samsung/DSRD/DSRDGUI0.EXE (firmware updater)
This EXE file is packed with WDOSX and can be unpacked with WDOSXUnpacker (which 
requires Python 2.7, it does not run unter Python3!):
https://raw.githubusercontent.com/0xDB/WDOSXUnpacker/master/WDOSXUnpacker.py 
Then you have 2 files for the firmware:
samsung/DSRD/DSRD.enc     (firmware update configuration file)
samsung/DSRD/FW/ext0bb6q/EXT0BB6Q.enc (firmware itself)

I decrypted half of it, which allowed me then to find a tool that is able to fully decrypt them:
https://github.com/ddcc/drive_firmware/blob/master/samsung/samsung.c 
The obfuscation is a 4-Bit encryption of the upper nibbles in every byte.

https://github.com/ddcc/drive_firmware/blob/master/samsung/samsung.c
https://raw.githubusercontent.com/0xDB/WDOSXUnpacker/master/WDOSXUnpacker.py


I hope that this ishei not the only protection mechanism against malicious firmware-updates.

The firmware update configuration file contains a list of old firmware versions it can be applied to, 
and which new firmware version they should get, and I think whether a restart is needed.

At first I tried to decompile the firmware, but I saw that there are several problems with this 
approach: ARM has a Thumb mode, which is a different ISA (Instruction Set Architecture) that is 
only 16 bits per command, and it can switch between ARM (32 Bit) and THUMB (16 Bit) mode 
back and forth with every jump/call. So it depends on the compiler what code it wants to generate, 
and it is hard to guess whether a particular DWord is actually 1 ARM instruction or 2 THUMB 
instructions just from the raw binary. The usual method is to take one known entry point (assuming 
that the CPU normally starts in ARM mode, not in Thumb mode), and then follow to any jump/calls
and learn from them whether the targets points are actually ARM or Thumb. But since I did not 
knew any entry points in the beginning, that approach did not looked good to me. The approach I 
decided to do is to single-step debug through the firmware through the JTAG interface, and to 
record for every single-stepped instruction, whether it is ARM or Thumb and then to feed those 
information from the traces back into the disassemblers and decompilers, which memory areas 
contain ARM code or Thumb code. (Look for .r2 files that are generated). 
Another problem is the memory mapping. The firmware file consists of 10 parts that are loaded to 
different memory regions, and later on I found out that some of them are additionally mapped to 
other ranges, and that partly depends on the actual CPU core they are running on. This actual 
mapping is also interesting and helpful for disassembling/decompiling it.

Then I analyzed the format of the firmware file, and found that it contains a header, then 10 
partitions (nicely aligned and not overlapping), and at the end some data that is outside the 
partitions. The previous firmware versions had a very similar structure, only a few partitions had 
slightly different sizes.

http://www2.futureware.at/~philipp/ssd/analyse/EXT0CB6Q.dec.html 

Layer 3 - Communication

After succeeding to setup the JTAG link, I started OpenOCD and configured it. I created the 
following configuration files:

novena-jtag.tcl Novena JTAG configuration
novena-swd.tcl Novena SWD configuration (this is not applicable to this SSD, but if you want to 
analyze some other board which has a SWD interface with your Novena, this file is what you need.
samsung-mex.tcl Samsung MEX configuration

You then run OpenOCD with both configuration files:
openocd -f novena-jtag.tcl -f samsung-mex.tcl
I have copied both files into a openocd.cfg so that I can start openocd with "openocd -f 
openocd.cfg"
(If you are using a raspberry instead of the Novena, you would use some configuration for raspberry
together with the samsung-mex.tcl instead of the novena-jtag)

http://www2.futureware.at/~philipp/ssd/samsung-mex.tcl
http://www2.futureware.at/~philipp/ssd/novena-swd.tcl
http://www2.futureware.at/~philipp/ssd/novena-jtag.tcl
http://www2.futureware.at/~philipp/ssd/analyse/EXT0CB6Q.dec.html


JTAG SCAN:

Instructions 0-7 all seem to be only one Bit long, which is always zero. But it could also be 0 bits 
long.
> irscan auto0.tap 0 ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFFFFFFFFFFE
> irscan auto0.tap 0 ; drscan auto0.tap 64 0x0
0000000000000000
> irscan auto0.tap 1 ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFFFFFFFFFFE
> irscan auto0.tap 1 ; drscan auto0.tap 64 0x0
0000000000000000
> irscan auto0.tap 2 ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFFFFFFFFFFE
> irscan auto0.tap 2 ; drscan auto0.tap 64 0x0
0000000000000000
> irscan auto0.tap 3 ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFFFFFFFFFFE
> irscan auto0.tap 3 ; drscan auto0.tap 64 0x0
0000000000000000
> irscan auto0.tap 4 ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFFFFFFFFFFE
> irscan auto0.tap 4 ; drscan auto0.tap 64 0x0
0000000000000000
> irscan auto0.tap 5 ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFFFFFFFFFFE
> irscan auto0.tap 5 ; drscan auto0.tap 64 0x0
0000000000000000
> irscan auto0.tap 6 ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFFFFFFFFFFE
> irscan auto0.tap 6 ; drscan auto0.tap 64 0x0
0000000000000000
> irscan auto0.tap 7 ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFFFFFFFFFFE
> irscan auto0.tap 7 ; drscan auto0.tap 64 0x0
0000000000000000

Now it gets interesting starting from instruction 8 (0100): Here we have a 32/37 Bit register. This is 
called the JTAG_DP_ABORT according to the specs.
> irscan auto0.tap 8 ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFF800000000
> irscan auto0.tap 8 ; drscan auto0.tap 64 0x0
0000000000000000

Instruction 9 is 1 bit long again:
> irscan auto0.tap 9 ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFFFFFFFFFFE
> irscan auto0.tap 9 ; drscan auto0.tap 64 0x0
0000000000000000



In Instruction 10 we have actual data, this instruction is possibly used for accessing the ARM cores, 
this is the JTAG_DP_DPACC register:
> irscan auto0.tap 0xa ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFF800000002
> irscan auto0.tap 0xa ; drscan auto0.tap 64 0x0
0000000000000002

In instruction 11 we have even more interesting data, which is changing, this is the 
JTAG_DP_APACC register:
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0x0
0000000000000002
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFF81843081A
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0x0
000000000000009A
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFF80000009A
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0x0
000000000000009A
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFF80000009A

Instructions 10 and 11 have some strange set/reset logic in them:
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0x0000000000000
000000000000009A
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0x0000000000000
000000000000009A
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0x0000000000000
000000000000009A
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0x0000000000000
000000000000009A
> irscan auto0.tap 0xa ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFF80000009A
> irscan auto0.tap 0xa ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFF800000002
> irscan auto0.tap 0xa ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFF800000002
> irscan auto0.tap 0xa ; drscan auto0.tap 64 0x0
0000000000000002
> irscan auto0.tap 0xa ; drscan auto0.tap 64 0x0
0000000000000002
> irscan auto0.tap 0xa ; drscan auto0.tap 64 0x0
0000000000000002
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0x0000000000000
0000000000000002
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0x0000000000000
000000000000009A
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0x0000000000000
000000000000009A
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0xfffffffffffff
FFFFFFF80000009A



> irscan auto0.tap 0xb ; drscan auto0.tap 64 0xfffffffffffff
FFFFFFF80000009A
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0xfffffffffffff
FFFFFFF80000009A
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0x0000000000000
000000000000009A
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0x0000000000000
000000000000009A
> irscan auto0.tap 0xb ; drscan auto0.tap 64 0x0000000000000
000000000000009A
> irscan auto0.tap 0xa ; drscan auto0.tap 64 0xfffffffffffff
FFFFFFF80000009A
> irscan auto0.tap 0xa ; drscan auto0.tap 64 0xfffffffffffff
FFFFFFF800000002

Instruction 12 and 13 seems to be one zero bit again:  
> irscan auto0.tap 0xc ; drscan auto0.tap 64 0x0
0000000000000000
> irscan auto0.tap 0xc ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFFFFFFFFFFE

Instruction 14 is the IDCODE:
irscan auto0.tap 0xe ; drscan auto0.tap 64 0xffffffffffffffff
FFFFFFFF4BA00477

And Instruction 15 (which should be BYPASS) seems to be 0:

If I didn't overlooked something, it seems that there is no Boundary-Test support available on the 
Samsung MEX  :-(  this would have been helpful to test the various traces on the PCB, whether they
might be broken/shorted/…
I was hoping for a EXTEST/SAMPLE support to be able to boundary test the BGA balls, to make 
sure there is no physical problem there, like cold solder joints, unconnected BGA balls, ...
If anyone from Samsung or other vendors reads this: Please make sure in the future that your chips 
have Boundary-Scan available and provide at least BSDL files in your repair manual for 
professional failure analysis, even if there is only one Boundary scan-able chip on it, and Boundary 
Scan does not seem to make much sense on first sight.
Later on with the SAFE-Mode, I discovered that the SATA Port physically works properly, so the 
boundary scan is not necessary for me anymore, but I still believe that it would be helpful for other 
customers to be able to boundary test the devices in the field, to better diagnose problems.

Layer 4 - Memory

I bought a similar SSD, which luckily had the same PCB design, same chipsets and even the same 
Firmware version (EXT0CB6Q).
So I dumped the whole memory (tried through the full 4 GB address space of the 32 Bit processor).
I decided to separate the whole memory into 64KByte blocks. (Divide & Conquer)



I tried to read every 64KByte block. If the block was readable, it would take approximately 10 
seconds (6 KB/s through JTAG. I would be interested if anyone got better performance with 
different JTAG adapters).
(Note for future projects: 64 KByte Blocks is perhaps too large, there might be smaller memory 
blocks somewhere.) In normal mode, I did not discover any smaller blocks, only in SAFE mode, I 
found a 32 KByte Block, or perhaps it was 96 KByte.
If the block was not readable, it would take approximately 1 second. 

In parallel, I developed a single-stepper that traces through the firmware, and logs the Program-
Counters and ARM<->Thumb instruction set changes, to get a feeling for where the CPU usually 
hangs out, and where code-regions are, and which instruction set they are using. The information 
about the instruction set is important for disassemblers like radare2, which have a hard time to 
guess the instruction set from raw firmware files otherwise.
                                                                                                               
The broken SSD continuously cycles through the following locations:
0x0081b814, 0x0081b816, 0x0081b818, 0x0081b81a, 0x0081b824, 0x0081b826, 0x0081b82a

The following is a dump of the register values:
(0) r0 (/32): 0x203B0000 (dirty)
(1) r1 (/32): 0x00000000
(2) r2 (/32): 0x00008000

> mex arm disassemble 0x0081b810 20 thumb
0x0081b810  0x408a    LSLS r2, r1
0x0081b812  0xe007    B 0x0081b824
0x0081b814  0x68c1    LDR r1, [r0, #0xc]    (Read word from 
0x203B0000+0xc=0x203B000C)
0x0081b816  0xb289    UXTH r1, r1            ; Clears the upper 16 Bits
0x0081b818  0x4211    TSTr1, r2                ; Checks for 0x8000
0x0081b81a  0xd003    BEQ 0x0081b824            ; It is usually equal
0x0081b81c  0x68c1    LDR r1, [r0, #0xc]
0x0081b81e  0xf362010f BFI r1, r2, #0, #16
0x0081b822  0x60c1    STR r1, [r0, #0xc]
0x0081b824  0x68c1    LDR r1, [r0, #0xc]    ; so we continue here, Loading the value again
0x0081b826  0xea124f11 TST.W r2, r1, LSR #16   ; Test r2 with r1 shifted left (?)
0x0081b82a  0xd0f3    BEQ 0x0081b814            ; Branch if Equal, this is usually equal
0x0081b82c  0x4770    BX r14
0x0081b82e  0x0000    LSLS r0, r0, #00
0x0081b830  0x0000    LSLS r0, r0, #00
0x0081b832  0x2038    MOVS r0, #0x38
0x0081b834  0xb570  PUSH {r4, r5, r6, r14}
0x0081b836  0x4604    MOV r4, r0
0x0081b838  0x4615    MOV r5, r2
0x0081b83a  0x0780    LSLS r0, r0, #0x1e

Sometime later, I discovered that the different CPU cores have an at least slightly different view on 
the memory:
> mex1 mdw 0x40825088
0x40825088 44465331                            1SFD
> mex2 mdw 0x40825088
data abort at 0x40825088, dfsr = 0x0000000d



embedded:startup.tcl:21: Error: error reading target @ 0x017aa
> mex3 mdw 0x40825088
data abort at 0x40825088, dfsr = 0x0000000d
embedded:startup.tcl:21: Error: error reading target @ 0x017a4

These differences need further investigation.
The current results intermediate results are the following:
ATCM (A-Tightly-Coupled-Memory), starts at 0x00000000 and is 96-128KB large, this is 
individual memory per CPU-core. Core-1 gets the ROM with the bootloader instead of the ATCM at
0x00000000 when loading in SAFE-Mode. I haven’t figured out how this is implemented, and 
haven’t found a mechanism how this memory mapping could be changed from the CPU.
BTCM is loaded at 0x800000 and is 8MB shared between all the CPUs.

Later on, I discovered that the internal SPI flash is most likely 128KB in size, and it contains only 
the firmware that is used in SAFE mode, it does not contain any keys or the normally used 
firmware. The normally used firmware is stored in the so called SA area on the big NAND flash 
chips, most likely directly at the beginning of the NAND flash.

Layer 6 - Multi-Tasking
To get more information about the SSD, I started to do some behavioral analysis:
I applied different workloads:
* Reading sectors from the SSD
* Writing sectors to the SSD
* Reading geometry info from the SSD
* TRIMing sectors on the SSD
(* Firmware update - I have not tried that yet)
Those workloads are implemented in the workload_*.sh files.

Then I tried to selectively turn off and on the 3 CPU cores of the Samsung SSD through JTAG.
For reading and writing, I discovered that all 3 cores are needed. 
If I halt any of the cores, the data transfer is stalled and it can only complete (or would timeout 
eventually) if I resume all 3 cores again.
Then I wanted to find out in which order the cores work together.
So I developed a tool that can try all possible variants of turning on and off the various 
cores(cores1.pl), and find out which is the shortest path to successfully complete the workload 
(corestrategy.pl).
When I tried this on a hdparm “geometry info” function (which queries from the SSD information 
about the size and geometry of the disk), it gave the result that it first needs a timeslice on core 
mex1 and then a timeslice on mex2, mex3 is not needed.
(And mex1 and mex2 do not need to be on at the same time)
Which brought me to the following theory:
mex1 is responsible for receiving data through SATA
mex3 is responsible for communicating with the NAND Flash, where the actual data is stored
mex2 is responsible for replying back through SATA
For reading or writing a sector from the SSD, the following timeslices are needed: 1->2->3 or 
1→3→2.
So mex1 must come first (to parse the SATA request), then 2 and 3 must come afterwards, 
interestingly in any order?!? (This fact leads to the hint that there must be a SATA core, which is 
independent of the 3 ARM cores, which sends the response as soon as both cores have committed 
their parts to it.

http://www2.futureware.at/~philipp/ssd/corestrategy.pl
http://www2.futureware.at/~philipp/ssd/cores1.pl
http://www2.futureware.at/~philipp/ssd/


(You can try those with the corestrategy.pl, which calls cores1.pl)

So all those 3 tasks can be handled (mostly) independently in parallel.
Later on it turned out that the cores have different roles than I thought: mex1 is responsible for 
taking commands from SATA (and likely also PCIe), it does initial parsing and then delegates to 
mex2 and mex3 for load balancing. mex2 and mex3 are nearly identical, and each of them controls 
4 flash channels, which make 8 flash channels in total. mex2 and mex3 both can finalize a SATA 
response. Even later I found out that mex1 is likely called “HCORE” which stands for HOST-
CORE, the core that interfaces to the host, the computer. And mex2 and mex3 are called FCORE, 
FLASH-CORE, they are responsible for interfacing with the FLASH. But since that information 
came too late, I will continue calling them mex1, mex2 and mex3 in this paper.

Layer 7 - Application
What I am primarily interested is resurrecting the SATA PHY (the physical interface for the SATA 
interface). But where is it?
So I searched for the SATA PHY. 

One problem I learned with the workload testing above is that there are various timeouts in the 
SATA protocol, so that any request for reading/writing a block should finish within seconds rather 
than minutes.
Tracing the whole handling of the SATA controller during such a request is too slow. 
And when the timeouts are reached, in some situations the computer and the SSD are getting so 
much out-of-sync that they are not able to recover the communication anymore, 
and I have to manually disrupt the SATA communication by unpowering the USB-SATA bridge. 
(This could be perhaps automated by Novenas USB-Hub powering through GPIOs, I haven't tried 
that yet)
So I transported the idea of DNA-sequencing into Debugging:
I designed a workflow to continuously read a single sector from the SSD with a distinctive address:

while true
do
dd if=/dev/sda of=/dev/null count=1 skip=1251255 #0x1317b7
#dd if=/dev/sda of=/dev/null count=1 skip=4235125 #0x409F75
done

While running this workflow, I usually let all the cores run. I randomly interrupt one core, trace and 
log 30 instructions, then I resume the core, so that it can fulfill the request and still be hard-realtime 
compliant.  Similarly to Gene sequencing, I get short snippets of 30 instructions each,
which are randomly overlapping, which can be puzzled together again.  (See puzzle.pl)
Some benchmarking: 1 Instruction: 3 seconds (mostly overhead), 10 Instructions:   5 seconds, 30 
Instructions: 12 seconds, 100 Instructions: 31-44 seconds

One thing that helps a lot there is that I initially decided to log with each instruction what the next 
instruction after it actually is. So it would even work with single instruction snippets.
So I ran the workload and collected snippets, and then I searched through the snippets I got for the 
distinctive address I used for reading the block, and I found parts of it.

0x00000af8->0x00000afa Thumb Supervisor 0x00000af8  0x78c9      LDRB    r1, [r1, #0x3] 
r1:0x00800D80=>0x00000025 r1:0x00800D80=>0x00000025 [0x00800D83]=1317b025

http://www2.futureware.at/~philipp/ssd/puzzle.pl


Then I changed the address to a different and distinctive address, and then the new address showed 
up in the same places:

0x00000af8->0x00000afa Thumb Supervisor 0x00000af8  0x78c9      LDRB    r1, [r1, #0x3] 
r1:0x00800DA0=>0x00000025 r1:0x00800DA0=>0x00000025 [0x00800DA3]=409f7025

The LDRB instruction only loads a single byte, but my tracer always reads 32 Bits (a DWord) from 
the memory location that is accessed. So we are accidentally finding the sector address here,
and the CPU is only interested in a single byte next to it, which turned out to be the SATA request 
command byte.

So with trace sequencing, I found where the SATA PHY hands over the requested block address to 
the CPU: 
0x00800DA0 seems to be one of the base addresses of an incoming SATA Request.
0x00800DA3 (base_addr+3) contains a byte with the SATA request command. 
Some important SATA commands:
 0x25 read DMA extended (LBA48) (LBA=Logical Block Address)
 0x35 write DMA extended (LBA48)
 0x92 Download microcode (Firmware Update)
 0xb0 SMART

If you are more interested in the SATA commands:
http://www.t13.org/ 
http://www.t13.org/documents/uploadeddocuments/docs2006/d1699r3f-ata8-acs.pdf 

Some of the base addresses I observed in the various sequences were 
(strings debugmex* |grep 0x00000af8 |grep -v LDRB |sort |uniq)

0x00800C00
0x00800C10
0x00800C40
0x00800C50
0x00800C90
0x00800CB0
0x00800DE0
0x00800D60                                                                                                             
0x00800DF0
0x00800E00

So everything from 0x00800C00-0x00800E0F is definitely SATA Requests (perhaps the range is 
even bigger) and the whole 0x00800XXX is potentially SATA PHY related, I would say.
Another thing this tells us is that there are likely only 16 bytes for every SATA request available 
here.

Later on I discovered that there are actually 33 NCQ (Native-Command-Queuing) Buffers for the 
requests:
The first buffer starts at 0x00800C00, the second one at 00800C10, … so 0x00800DA0 is actually 
the 26th request buffer, and the final buffer starts at 0x00800E00 and ends at 00800E1F.  And every 
request buffer is 16 bytes long, and contains the SATA command, the requested address, ...

http://www.t13.org/documents/uploadeddocuments/docs2006/d1699r3f-ata8-acs.pdf
http://www.t13.org/


And even another thing is that the sector address does not actually seem to be read by mex1, so the 
whole memory management, wear-leveling, block relocation and tabling seems to be done by 
different cores.

All those addresses are definitely in the BTCM range (TCM=Tightly Coupled Memory, which is a 
fast SRAM that is tightly coupled to the CPU, most ARM chips have 2 TCM interfaces, named 
ATCM and BTCM) (ATCM starts at 0x0 and is 0x20000 large, BTCM starts at 0x80000 and is 
0x28000 large)
So either the SATA PHY can write into the BTCM itself (or with some DMA help), or the SATA 
PHY is memory mapped over the BTCM.

Then I looked at what happens after the SATA command byte is read by mex1.
The interesting thing is that the command byte (256 different possibilities) is hashed (multiplied, 
cut-off, shifted around, multiplied, shifted again),
and then it is looked up in a 16 entry hash table. Unfortunately hash-tables have the unfortunate 
property of possibly having collisions, and shoveling 256 possibilities into a 16 entry hash table 
makes that a practical problem,
so they created linked lists (or perhaps even trees) for every hash-table entry where the right entry 
for a specific command byte is searched.
When the right entry is found, and the function address is not null, the command-handler function is
called. If it is null, an error handler is called.
I would suggest to replace this complex construct with a simple 256-entry function pointer table, 
where every command byte that is not defined is redirecting directly to the error handler.
That way you would get constant O(1) performance, and likely about 1 microsecond less latency for
every SSD request, which the current SSD firmware wastes in the hash-table lookup.

Some more thoughts about the trace sequencing:
Even after some days of sampling, I still had sequence ends where I never had a sample that would 
match to it. 
In one case I had 3 different sequences that all ended in the same instruction, but none of the 
sequences had the following instruction in it.
So it seemed to me that there are barriers that I do not fully understand yet.
The first and easy reaction was to just do more sampling of sequences. 
But after thinking about it for a few days, I thought that perhaps the code runs at different speeds 
(e.g. due to interacting with fast TCM RAM or with slow IO devices elsewhere. Or Cache 
Hits/Misses)
If I always randomly interrupt the code, it is more likely that I hit slow running code than hitting 
fast running code, which should result in more sequences covering slow running code and less 
sequences covering fast running code.
Since I am always capturing 90 instructions, when the first instruction is a slow instruction, I might 
usually only get the first 90 instructions after a slow instruction and only very seldom instructions 
beyond the 90 after a slow instruction will be reached.
The way to verify this assumption is to calculate the distribution of all all the first instructions of a 
sequence among all instructions traced.
If there are significant differences, then the speed differences are likely a problem. (To be done ...)
But how can we mitigate this problem?
My current idea is identify dead-ends, and to specifically put breakpoints at those dead-ends, and to 
start tracing from where the break-point hits, instead of randomly halting the CPU and tracing from 
there.
When you succeeded to continue tracing at a dead end, then you will likely want to do the same 
again with the most likely newly found dead-end again. (To be done...)



So that's effectively a feedback-loop between sampling and sequencing.

The quest for the longest sequence.
So I developed my puzzle tool, which puzzles the sequences together.
I first started with the simple idea of taking the first sequence that was sampled, and at the end of 
the sequence, it looks through all occurrences of the needed next address.
It makes sure that the overlapping of a potential sequence with the sequence we need it for is good.
If the sequences fit, it attaches them together, and continues again at the end.
When we can find no more sequences, we are done.
One problem I saw quite early was that the algorithm often fell into short loops. What I did then 
was to randomize the list of potential sequences to be attached to the current one, which solved this 
short loop problem.
Another change I want to do is to remove the possibility to reuse sequences that were used already, 
which should remove long loops.

SHA256:
In the bad SSD, I found a SHA256 implementation in memory, in the blocks 0x80000000 and 
0x80010000. 
At 0x20064 in P23 which gets mapped to 0x80020264 I found the SHA1 hash initialization values
ddcc7 on Reddit found the same on a the firmware for the Samsung 840 (not EVO).
https://www.reddit.com/r/ReverseEngineering/comments/2uwhls/
samsung_ssd_firmware_deobfuscation_utility/ 

On the HDDGURU forum, I got the hint that SHA256 is used together with an elliptic curves 
digital signature to protect the firmware updates. Later on, I found something that looked like 
HMAC-SHA256, but it does not seem to be used for the firmware-update, it seems to be used 
elsewhere (TCG-OPAL perhaps?).

COMINIT/COMRESET
One question I researched is whether SATA PHYs usually automatically initiate/respond the 
COMINIT/COMRESET/COMWAKE signals, or whether the CPU has to signal to the SATA PHY 
that it should do that.
The SATA_PHY project on OpenCores seems to require this signaling from the CPU:
http://opencores.org/websvn,filedetails?repname=sata_phy&path=%2Fsata_phy%2Ftrunk%2Fdoc
%2FSATA+PHY+Design+Manual+v1_0.pdf 

2 other cores I found 
http://www.synopsys.com/IP/InterfaceIP/SATA/Pages/default.aspx 
http://ip.cadence.com/ipportfolio/ip-portfolio-overview/interface-ip/serdes-ip/sata-phy 
do not seem to require signaling and do the initial communication themselves.
They only need a signal, whether they should behave as host or device, but this can be baked and 
optimized away, I guess.

In the end it turned out that COMINIT/COMRESET has to be signaled with the CPU, and mex1 
cares about it: When I made the change from inserting the SSD into a USB drive bay (for easier 
handling) to connecting the SSD with separate power and data cables, I tried to see what happens 
when the SSD is only connected through power but does not get talked to through SATA data, and 
found that the SSD was able to cope with that:
So we have a state-machine that looks approximately like this:

http://ip.cadence.com/ipportfolio/ip-portfolio-overview/interface-ip/serdes-ip/sata-phy
http://www.synopsys.com/IP/InterfaceIP/SATA/Pages/default.aspx
http://opencores.org/websvn,filedetails?repname=sata_phy&path=%2Fsata_phy%2Ftrunk%2Fdoc%2FSATA+PHY+Design+Manual+v1_0.pdf
http://opencores.org/websvn,filedetails?repname=sata_phy&path=%2Fsata_phy%2Ftrunk%2Fdoc%2FSATA+PHY+Design+Manual+v1_0.pdf
https://www.reddit.com/r/ReverseEngineering/comments/2uwhls/samsung_ssd_firmware_deobfuscation_utility/
https://www.reddit.com/r/ReverseEngineering/comments/2uwhls/samsung_ssd_firmware_deobfuscation_utility/
http://www2.futureware.at/cgi-bin/ssd/showmem?addr=0x80020000&src=bad
http://www2.futureware.at/cgi-bin/ssd/showmem?addr=0x80010000&src=bad
http://www2.futureware.at/cgi-bin/ssd/showmem?addr=0x80000000&src=bad


As soon as the SSD is connected with power, it starts the firmware, when the initialization is done, 
it starts waiting for a connection with the HOST computer (a small loop that checks the status 
register 0x200000AC bits for the COMINIT signal), when that signal is given, it continues by 
configuring the SATA PHY for the connection, and then it starts waiting for Requests from the 
computer. 

The problem with my SSD is that the Firmware start seems to initialize the SATA PHY properly in 
the beginning, but it then somehow deviates from the correct program flow and does not get to the 
“powered wait” loop. If the firmware would get to the “powered wait” loop, it could get the 
COMINIT signal from the SATA PHY and could continue properly.
So where and why does it deviate? Where are possible branches in the program flow that could lead
to where the bad SSD is at the moment?
Later on, I found out that the reason is a problem in the flash channels that is detected by the 
firmware, and therefore it stops starting and does not enable the SATA interface.

Reverse Engineering Platform
To speed up reverse engineering, I started to develop a Crowd-Sourcing Reverse Engineering 
Platform:
http://www2.futureware.at/~philipp/ssd/analyse/EXT0CB6Q.dec.html 

The first page is the memory view. In the upper left area you see an image of the 4GB memory 
space of the ARM cores. Every pixel represents a 64KB block of the memory. The dark-gray areas 
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are accessible memory, the light-gray areas are unallocated address-space. The red area is the one 
you have currently selected.
On the right side of it you see a table with all the contiguous memory regions that I have identified 
so far. When you move your mouse over the table, you will see the specific region highlighted in 
red on the left image. When you click on the start address a new window/tab will open with a 
memory browser. If you can identify anything interesting, please leave a comment by clicking on 
“Comment” and fill the form there.

In the lower left area you can see the firmware that was provided by Samsung on their website, and 
the sections, and where they are mapped to. When you click on the links in the partition number 
field, you get to a memory comparison between the bad SSD, and 2 different readouts of the good 
reference SSD. (If the 2 different readouts of the good SSD are different, that means that it is 
volatile and differences between the good and the bad SSD are likely not a problem). 

On the lower right side you have a table of the 3 ARM cores and their read- write- and execute 
behavior. When you move your mouse over the cells, you can see the traces of the behavior on the 
image in the upper left area. 
Below that, you have a link to the Debug Traces that I collected: http://www2.futureware.at/cgi-bin/
ssd/logs 

I sorted them by CPU core and by the workload that was executed during the trace. 
Then I added search functions: When you click on the link on “x” on the addresses, it searches 
through all traces for all executions of this instruction, so that you can compare the different data 
that flew through this instruction, and see under which workloads the code is needed.

I have published the software behind this platform on GitHub:
https://github.com/thesourcerer8/CrowdRE 
If you have any improvement ideas for the platform, please post issues on GitHub.

Regarding discussing and organisation, started a discussion thread on the Kosagi Forum for Novena
Firmware: https://www.kosagi.com/forums/viewtopic.php?id=421 

To discuss the hardware and electrical side of the SSD, I started a thread on the HDDGURU forum: 
http://forum.hddguru.com/viewtopic.php?f=13&t=34306 

I still have a lot of things that I started on that I haven’t fully finished visualising yet.

http://forum.hddguru.com/viewtopic.php?f=13&t=34306
https://www.kosagi.com/forums/viewtopic.php?id=421
https://github.com/thesourcerer8/CrowdRE
http://www2.futureware.at/cgi-bin/ssd/logs
http://www2.futureware.at/cgi-bin/ssd/logs


For example, I measured the entropy of the blocks (bad,good,good2) and whether they are identical 
or different:
http://www2.futureware.at/~philipp/ssd/todo/changes.txt 

I collected all read, write and execute accesses of the traces and compiled them in a list:
http://www2.futureware.at/~philipp/ssd/loganalyse.txt 
One analysis I want to make is for read/write access to the same address by different cores, which 
could identify Inter-Core Communication.

Disassembling & Decompiling
After a lot of tracing, I reached some limitations of tracing:
Some code areas are hard to reach, similar to reaching 100% test coverage in testing. Especially if 
you do not know the sourcecode and it’s intentions.
So I started to investigate the disassembling and decompiling again.
As targets I chose Radare2 and IDA Pro.
In my first experiments, I wanted to mount all the sections from the complete 4GB memory space 
into radare, so that radare can see all data and interpret it correctly. But then I decided to start with 
the firmware code that is used for initialisation of mex1, which located in the 128KB right at the 
beginning. 
First I took all the comments, and filtered the Safe-mode comments away. 
Radare gets “CC comment” @address and IDA Pro gets MakeComm()
I took all the trace logs, filtered them for the mex1 instructions in normal mode (not Safe mode), 
and generated ahb commands for radare2 and SetRegEx() for IDA Pro for every instruction to 
signal ARM/THUMB mode.
Then I searched for BL/BLX instructions in the trace logs, which are function calls. Even call 
addresses jump to ARM code, uneven addresses are signaling THUMB code, and have to be 
decremented for the real target address. For every function call, I generate SetRegEx(), 
MakeFunction() and MakeName() for IDA Pro and ahb, f and af for Radare.

If you want to use radare2 or IDA Pro yourself, take a look here:
http://www2.futureware.at/~philipp/ssd/disasm.html 

Later on, I gave tracing another try, and figured out how to configure Linux not to timeout on SATA
requests. The following command raises the timeout for 1 million seconds, which was enough to 
trace the full behavior for the disk “sda” (you have to replace sda with the devicename of the SSD 
on your system)
echo 1000000 >/sys/block/sda/device/timeout

Firmware Flow visualsation
I used a commercial tool PQM for business process analysis to visualize the flows that I traced 
between the various functions, this helped a lot to understand what is actually going on in the 
firmware. The following screenshot shows read requests that are handled on mex2:

http://www2.futureware.at/~philipp/ssd/disasm.html
http://www2.futureware.at/~philipp/ssd/loganalyse.txt
http://www2.futureware.at/~philipp/ssd/todo/changes.txt


Flash Translation Layer (FTL)
The Flash Translation layer is spread across the 3 cores in the following way:

At first, MEX1 (likely named HCORE or Host-Core by Samsung) receives the SATA requests, as 
LBA512 addresses (LBA addresses for 512 Byte-Blocks. LBA stands for “Logical-Block-
Addressing” which). It divides the LBA512 down to LBA4K and LBA8K addresses. 8K (and 
larger) requests are split up into 4K requests.

The LBA4K addresses modulo 511 are looked up in HashMap with a Linked list that is empty when
starting and is getting filled primarily with Write requests, but sometimes also Read requests end up
there.

The LBA4K address modulo 2 (also known as the LSB) is used to decide, whether the request is 
delegated to MEX2 or MEX3 (they are likely named F-Cores, or Flash-Cores by Samsung).

Then the request is delegated to MEX2 or MEX3, and only the LBA8K address is handed over with
the delegation, together with a bitmask which signals which 512-byte-parts of the 8K block are 
actually to be read. 

Now from the MEX2/MEX3 perspective:

MEX2/MEX3 receive the delegated command with the LBA8K address, and divides it by 4 to 
calculate the LBA32K address. (MEX2 intrinsically knows that is always responsible for the lower 
4KB and MEX3 knows that it is responsible for the upper 4KB of the 8K request they get)

The LBA32K modulo 128 is used to lookup something at 0x823168.

Then the LBA32K is further divided and modulo’d by 3760, into LBA32div3760 and 
LBA32mod3760, which are first used to lookup in a bitfield, and later on in a Hashmap for the 
FTLaddr (Flash-Translation-Layer-Address), this is the core of the mapping from the LBA32K 
address to where it is stored in the Flash.



At first I thought that the LBA32K address is mapped to the FTLaddr, which would make it 32K-
aligned/sized. But later on, I realized that the FTLaddr is actually 4KB aligned/sized. It turned out 
that there are 8 tables (4 tables are used by MEX2, the other 4 tables by MEX3) which translate 
from LBA8K→FTLaddr, and the FTLaddr is different for different 8KB-blocks inside the same 
32KB block, so the FLTaddr is actually 4KB sized. And those 8 tables actually correspond to the 8 
flash channels.

Now the situation gets a bit difficult, because the flash is organized in several dimensions (Zone, 
Channel,  PBPN, FTLbit), and depending on the order in which you look at those dimensions, the 
sizes are very different. (The plan to figure out which dimension means what is to try Erasing and 
seeing which dimensions are affected and which are not affected)

The FTLaddr is then devided by 512 to get a 16-MB size, the rest is remembered as PBN64K as 
32K offset into the 16MB blocks. The 16MB could be the Erase-Size. 

Now this 16MB is spread by180 16MB blocks, which is about 2.8 GB of space for the SA area at 
the beginning of every physical Flash chip on the PCB. This results in the “LPA, the 
LargePhysicalAddress”. The LPA is then divided by 8380, which is the Zone (which physical chip 
on the PCB), and the rest is the PBN (Physical Block Number), which is the physical 16MB Block 
inside the Physical Chip.

To read/write the physical chip, the PBN64K is added again to the 16MB-sized PBN (Physical 
Block Number) and together they form the PBPN (PhysicalBlockandPageNumber). 

So with the Zone you address the physical chip, with the PBPN you address the 8KB page inside 
the chip, and with the bitfield you select which of the 512 Blocks in the 8KB block you want to 
read. 

So I was  missing the last 3 bits between the 8KB and 64KB. I guessed that they might be given by 
8 Flash controllers. It first turned out that all 8 flash controllers have access to the same data, but I 
later found out that this must been a special case, and those 3 bits are actually into which flash 
channel to use.

On the other hand, we have 2 chips which are together 250 GB, so one of them must hold a little 
more than 125 GB. Since the LPA is divided by 8380, we would get 134080 MB / 8380 = 16 MB, 
so a PBN should be 16MB in size, not 8KB. If we would take 8KB*256*83800*2, we would get 
only 16 GB capacity per chip. That’s what I meant with the dimensions ...
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TRIM SUPPORT
I tried trimming the SSD, and discovered that only 4KB (= 8 x 512-Byte blocks) aligned TRIM 
commands have any effect on the SSD. Sending 8 TRIM commands for 1 block each instead of one 
large TRIM command for the same 8 512-Byte blocks does not have any effect. Sending a TRIM 
command for unaligned 16 blocks only affects the aligned 4KB inside the TRIM region, the 
unaligned start and the rest at the end of the TRIM region is ignored. The reason for this is that the 
FTL inside EVO840 primarily works on 4KB and 8KB blocks, so the SSD simply does not care 
about anything smaller. So if you want to send a random TRIM command that definitely deletes at 
least some data, you would have to make it at least 15 blocks large. Please keep in mind that most 
partitioning tools created unaligned partitions by default in the past, so even if you align your TRIM
commands within a partition, they might be unaligned on the disk.

FTLmap (Flash Translation Layer Mapping)
After I had a rough overview of how the FTL system works, I started to develop a tool that should 
be able to dump and decode any given sector directly from flash, without using the firmware 
(dumpflash.pl)

At first I tried it with sector 0, since sector0 is most likely already loaded by the operating system, 
and because it is the easiest to start with. When I had it working, I continued with sector 1, … 

I monitored what actually happens when a sector is read from flash, and recorded all the relevant 
parameters (everything that is SToRed). Then traced the values that were stored to the places where 
they were calculated  by the firmware, and tried to learn how all the values are calculated, the 
dependencies, …

In a simplified diagram the FTL mapping looks like this:

The FTL takes the LBA number (which 512-Byte block should be read/written to/from the SSD), 
and calculates the address in the FTLmap. The FTLmap contains the wear-leveling mapping for 
every 4KB page of the SSD, so every 4KB can be anywhere on the SSD. Every entry in the 
FTLmap is 64 Bits / 8 Bytes, so the FTLmap for a 250 GB SSD (4883997168 512-byte blocks) 
takes up 466 MB, which is taking up most of the RAM that the SSD has (512 MB). The address 
from the FTLmap together with some more bits from the original LBA request is then calculated 
into the parameters for accessing the right page of Flash. The AES key is directly derived from the 
LBA, it does not depend on the data in the FTLmap.
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Then I tried to calculate all the values for the parameters that are sent to the flash PHY. (And I just 
retrieved the values from the FTLmap from RAM through JTAG). When I got it working for all the 
parameters for sector 0, I was able to retrieve the encrypted data of sector 0 and together with the 
secret keys and the initialisation vector I was able to decode it. I was able to retrieve the first 4 KB 
of the SSD. Then I tried the other sectors, there I saw that I was also to get sector 8, but for all the 
other sectors (1 to 7), I got the wrong data, although I sent the correct parameters in. I compared 
what I sent to what the firmware sent, and they were identical. After some thinking, I had the idea 
that perhaps I sent the correct parameters to the wrong address, and that turned out to be the 
problem. Long time ago, I had tried to read from the various channels, and all seemed to return the 
same data, so I thought that I could use any channel to retrieve the data. I currently guess that I just 
read coincidentally identical copies. But it actually mattered, which channel I used, and all of the 8 
channels deliver different data. And which channel you use is defined by the address where you 
send the parameters to. So I figured out how the correct channel needs to be calculated (it is 
determined by the LBA address), and then I was able to read all the sectors. … I thought. After 
some more tests where I tried to read random sectors from the whole SSD, it turned out that I could 
only read approximately the first 100 MB of the SSD. So analyzed where the problem was and it 
turned out that the FTLmap did not had any valid values beyond the first 117,5 MB. So I tried to 
trace read requests to sectors within the first 117 MB and beyond that (always directly after 
powercycling the SSD), and it turned out that the SSD did 8 read requests from FLASH before it 
actually read the sector it should read, which contained the requested data. So the firmware filled up
the FTLmap on demand! So it turned out that the visible LBA space is seperated into 2030 blocks 
where each block contains 3760 times 32KB, which is exactly 117.5MB. And all those blocks are 
only loaded from the NAND Flash to RAM on demand, on the first access there. Why is it that 
complicated? Most likely to speed up the startup process of the SSD, and also to reduce the wear of 
the flash. If it would have to load all the contents of the FTLmap into RAM during the startup 
process, it might take 2 seconds longer, and not only write access but also read accesses are wearing
out the flash cells, which is to be avoided. Another potential reason could be that they need a 
smaller size for atomic updates to the FTLmap for write processes.

So if you want to dump the whole FTLmap from RAM, you should first send read requests for at 
least 1 sector every 117.5 MB to the SSD, to get the whole FTLmap loaded into RAM before you 
can dump it. That’s 2030 requests on the 250 GB SSD. Doing this might also be a good idea to do at
bootup time if you need a reliable low latency from the SSD, or if you want to prevent cache timing
sidechannel leaks. 

Which part of the FTLmap is currently loaded into RAM is stored in a bitarray at 0x849e81a0 for 
MEX2 and 0x933E81A0 and 9x953741A0 for MEX3 in RAM
A currently open question is where the FTLmap is actually stored on the Flash, and how it is wear-
leveled. This needs further investigation.

SAFE MODE UART
The UART interface that is available in SAFE Mode has 3.3Volt FTDI RX/TX pins, and uses 
115200 8N1 configuration.
Unfortunately, it is not designed to be used with a Terminal, but it is designed to be used with a 
special purpose SSD debugging application, which likely only Samsung has.



It has a dozen commands, the only one I analyzed a bit further is the “r” command, which can be 
used to read data from memory.
I found a tool called “HDD Serial Commander” http://www.hddserialcommander.com/ which 
should provide a GUI for the commands. (The commands have to be inserted into a SQLite 
database there)
From the CPU side, you can interface the UART the following way:
UART Base address: 0x20503000
Reading a byte from UART: [0x20503018] : Serial Byte IN 
Writing a byte to UART: [0x20503014]: Serial Byte OUT (you must write at least 16 bits to this 
register, but only 8 bits will be written on the serial line)
After every read/write operation, the firmware code waits approximately 50 CPU cycles in a loop.
You can see the communication patterns here: http://www2.futureware.at/cgi-bin/ssd/logs?
log=debugmex1-safe-press-r-UART_REGISTER.log (search for UART on that page)

After some more decompiling, I think I fully understand the UART protocol, there are 3 commands:
“rr” reads 32 bits from memory, it takes the memory address as 8 hexadecimal characters. “rw” 
writes 32 bits to memory. The rw command only uses the normal STR command, it does not have 
any flash-erasing super-powers.
“~” initiates a firmware update, followed by 1 Megabyte of the firmware file, followed by the “~” 
character again. 
It seems to me that the UART protocol does not support any other commands, but perhaps I 
overlooked something.
(Well, with SATA you can upload your own software to RAM and then with the write commands, 
you could overwrite any of the code areas and execute your own code there)

GPIOs (General Purpose Input Output)
There are a bunch of GPIOs in the controller. Their input value can be read from the register 
0x20501004:
The Direction register is  0x20501000. If the bit is set, it outputs the value from 0x20501004 to the 
GPIO, if the bit is cleared, it reads the value from the GPIO.
The meaning of the value in 0x20501008 is also related, but not clear yet.
20501008 is only written to, the following values: 0, 0x4005004,  |=0x4000, |=0x1000 (Bit 12), |=1,
|=0x5500, |=0x5000, |=0x50 (which is UART related), 0x30000. It is cleared directly after the 
direction is set to input and directly before the value is sampled.
Perhaps 0x20501008 is controlling PINMUXing or some other GPIO configuration?

Bit 2 (0x4): UART RX
Bit 3 (0x8): UART TX
Bit 4 (0x10): I2C – SCL (I2C Clock)
Bit 5 (0x20): I2C – SDA (I2C Data)
Bit 6+7 (0xC0): SATA COMINIT
Bit 9 (0x200): Pin11 from the SATA connector
Bit 10 (0x400): ? (this seems to be an input from the SATA core)
Bit 11 (0x800): ? (this seems to be an input from the SATA core)
Bit 12 (0x1000): ? Is set to Output by Stage 2, but never used, perhaps PINMUXed
Bit 13 (0x2000): ? Is set to Output by Stage 2, but never used, perhaps PINMUXed
Bit 15 (0x8000): I2C ??? perhaps providing power to something
Bit 16 (0x10000): ? Seems to be a configuration pin that is read just once
Bit 17 (0x20000): SAFE-Mode Pin (the one next to the JTAG pins)
Bit 18+19 (0xC0000): ? Seem to be configuration pins that are read just once

http://www2.futureware.at/cgi-bin/ssd/logs?log=debugmex1-safe-press-r-UART_REGISTER.log
http://www2.futureware.at/cgi-bin/ssd/logs?log=debugmex1-safe-press-r-UART_REGISTER.log
http://www.hddserialcommander.com/


DMA
The DMA controller (or one of the DMA controllers, it could be 8 or 9(=8+1) or perhaps even 
more, later on it turned out that there are actually 3 DMA controllers, one for each core) can be 
found at 0x10010060: To do a DMA transfer, you should wait for bit 4 in 0x10010060 to be cleared,
to make sure you do not interrupt a running transfer. Then you write 0 to 0x10010060 to signal that 
you want to initiate a new transfer. The DMA controller always transfers in blocks of 8 bytes, so 
you have to divide the size in bytes by 8 and subtract one and write the result to 0x10010064. The 
source address needs to be written to 0x10010068 and the target address needs to be written to 
0x1001006C. When you are done with it, OR 0x10010060 with the value 0x40004003 to initiate the
transfer. You can wait for [0x10010060] & 0x10 (bit 4) to be cleared again to wait for the transfer to
be finished if you want. Afterwards you should write 0 to 0x10010060 to signal that  the DMA 
controller is free again.
In SAFE mode, this can be used to dump arbitrary memory in a fast way:
You do a DMA transfer to copy the desired RAM to 0x85833000 by initiating the DMA transfer 
through JTAG with OpenOCD: 
  my $acht=($size>>3)-1;
  $openocd->write("halt\n");
  $openocd->write("mdb 0x10010060\n");
  $openocd->write("mww 0x10010060 0\n");
  $openocd->write("mww 0x10010064 $acht\n");
  $openocd->write("mww 0x10010068 $source\n");
  $openocd->write("mww 0x1001006C 0x85833000\n");
  $openocd->write("mww 0x10010060 0x40004003\n");
  $openocd->write("mdb 0x10010060\n");
  $openocd→write("resume\n");
Afterwards you should sleep 1 second to let the DMA transfer complete. We don’t want to actively 
wait for the DMA transfer to finish since this would interrupt the CPU too long, which could cause 
timeouts on the SATA bus. Just asynchronously starting the DMA transfer and waiting a second for 
it to be completed works fine.
And afterwards you can read up to 400 MB out of the RAM starting from 0x85833000 by simply 
reading from the SATA device, like “dd if=/dev/sda of=memdump.dat bs=512 count=10000”
I am still trying to find also the opposite way to write large blocks to arbitrary memory, but I 
couldn’t figure out what the SATA writes are doing exactly. Later on it turned out that writing works
in the same way, I just had problems with my test-setup.

Flash
I finally found the Flash Interface, it works the following way:

The base addresses for the flash channels are (MEX2:) 0x203C0000, 0x203D0000, 0x203E0000, 
0x203F0000, (MEX3:)  0x204C0000, 0x204D0000, 0x204E0000, 0x204F0000. 
The following is written for the base addresses of the first channel:
[203C3C00]:= 6(=WRITE) 7(=READ) – Flash Command (the other commands are documented 
below)
[203C3C04]:= 11(=DATA RW) 23(=SA RW) 1(=RW) – this parameter is important to be set 
correctly, but I don’t understand the meaning yet.
[203C3C08]:= 89(=DATA) 8A(=DATA) 0x10000007(=WRITE) 0x10000087(=SA) 
0x10A5(=READ), 0x10A7(=WRITE) – The FTLbit is added to 0x89 for the parameter for data 
access, the other bits are not understood yet.



[203C3C54]:=PBPN (Phyiscal Block and Page Number), the lower 8 Bits are the Page Number the 
upper bits are the Block number
[203C3C58]:= 0xFF, 0xFF00, 0xFFFF  (This is a bitfield, every bit represents a 512Byte block. 
0xFF and 0xFF00 are  4KB blocks, 0xFFFF is an 8KB block)
[203C3C5C]:= 0x804E8200 (80=DATA), 0x84938000(84=SA=Service Area) Memory address of a
8KB block where the data is read/written to, which sub-blocks are actually read/written to is 
specified by the bitfield at address 58 above
* The following 3 commands are only used for READ-UPDATE-WRITE cycles for the Service 
Area:
* [203C3C9C]:=PBPN+0x100  (reading it from an address and writing it again to the address 
+0x100 seems to be a wear-level algorithm here)
* [203C3CA0]:=0xFFFF (Bitfield again)
* [203C3CA4]:=Mem+0x4000
[20380000]:=0x3F  (This is a combination of 0x30 and 0xF, the F is the “destination”, which points
to 203C3C00 in the base addresses above (destination<<10). The 0x40 bit here also has some 
meaning.
[20380004]:=0601, 0701, 2601,  2701  (Zone selects the physical Flash chip on the PCB first chip 
0=>0yyy, second chip 1=>2yyy) (Read: 7 Write: 6)
[20380014]:=1 (starts the Flash-Transaction, this bit is cleared automatically when the Transaction 
is finished)
When the Flash Transaction is finished, an IRQ is issued, and the IRQ handler does:
[2038000C]:=0x7FFF8000
But this does not seem to be necessary.

Now regarding the status register [2038000C]: When everything is ok, it has the value 
0xFFFF0000. When you have read a sector it often gets the value 0x7FFF8000, which needs to be 
acknowledged by writing 0x7FFF8000 again (or more or less whichever value it had in it). When 
the register has the value 0x7FFF000 after any request, then the Channel seems to be dead. I could 
not find any way to resurrect a channel got into the 0x7FFF000 state, it seems to ignore all write 
requests to all the channel registers from then on. Unfortunately, the channels seldom go into the 
0x7FFF0000 state with my own reading code. If anyone can find a solution for that, please let me 
know. My broken SSD actually has channel status values like 0x0FFF0000 and 0xFFFD0000, 
which I never saw on any of the working SSDs I have. So I guess that the bits marked with the 
bitmask 0x700F0000 are showing hardware problems.

The Flash interface supports the following commands:

0x03: Unknown command

The function of this command is unknown. After this command, a sleep(600) or sleep(100) is done. 
Later on the result of this command can be retrieved with command 0x0B.
No Parameters
No Return value

0x05: ERASE command

This function is used in the firmware update routine. It erases a whole block of several pages at 
once.
Parameters:
[0x04]:=0x03
[0x08]:=0xA4
Return value in [0x0C]



0x06: Write-Page

This command can write 1-16 512-Byte blocks from RAM to FLASH. The firmware usually uses 8 
blocks, which make 4096 Bytes, and 16 blocks which make 8192 Byte. The Flash must be erased 
before it can be written to.

0x07: Read-Page

This command can read 1-16 512-Byte blocks from FLASH to RAM.

0x0A: Integrity check

This command is used in the firmware update code. After the command we are sleeping for 100,000
cycles. It most likely scans the communication between the SSD controller and the NAND flash for 
bit errors. It is used to check all the channels, whether they work correctly.
Parameters:
[0x08]: 0x20 (Bit)
It seems there is a return value at 0x20300050 + channel, which has the value 0xEC if the check 
succeeded or something else if the zone is bad. This is likely a hint for the Error Correction.

0x0B: Status

This is some kind of status command, which tells whether an operation has completed or not.
It is relevant after the commands 0x03, 0x10, 0x11 and 0x17
Return value:
[0x0C]: Return value, most interesting bit is bit 15:   ([0x0C]>>15)&1

0x0E: Unknown page-oriented command

This command is similar to the read and write commands 0x06 and 0x07. This command can run 
arbitrarily long, so it is handled with a timeout, and the status is checked every 500 cycles.
[0x04]: 0x01
[0x08]: 0x10A4
[0x58]: Bitfield, which of the 512-byte pages should be affected
[0x54]: PBPN…
[0x5C]: memAddr
[0x174]:= 0  (this it to overwrite any errors that happened earlier)
Return value:
[0x174]: 0xBEAF1234 is a possible return value likely signaling an error

0x10: Set-Value

This command can write a single byte into the Info page. See 
http://www.onfi.org/~/media/onfi/specs/jesd230b.pdf for more information about the Info page.
Parameters:
[0x18]: 0x01 – the number of bytes to be transferred
[0x1C]: Address in the info page, which byte should be changed
[0x20]: Value to be set
In case 2 bytes are transferred:
[0x24]: Address of the second byte
[0x28]: Value of the second byte
No Return value

http://www.onfi.org/~/media/onfi/specs/jesd230b.pdf


0x11: Get-Value

This command can read a single byte from the Info page
Parameters:
[0x18]: 0x01 – the number of bytes to be transferred
[0x1C]: Address in the info page, which byte should be read
Return value:
[0x20]: The byte value is returned here

0x12: Unknown command

The function of this command is unknown.
Parameters:
[0x18]: 0x01 – the number of bytes to be transferred
[0x1C]: Likely an address: Seen value: 0x02/0x01, 0x30, 0x85/0x01, 0x8D/var, 0xA0/0x00, 
0xA0/0x01, 0xA9/0x19E7
[0x20]: Unknown input parameter
No Return value

0x14: Unknown command

[0x10]: Parameter

0x15: Unknown command

The function of this command is unknown.
Parameters:
[0x10]: Unknown input parameter
No Return value

0x17: Unknown command

The function of this command is unknown. After this command, a sleep(600) or sleep(100) is done. 
Later on the result of this command can be retrieved with command 0x0B.
No Parameters
No Return value

0x18: Unknown command

The function of this command is unknown. It is likely doing the opposite of 0x19, since it is called 
before a read-page command and 0x19 is called directly afterwards.
No Parameters
No Return value

0x19: Unknown command

The function of this command is unknown. It is likely doing the opposite of 0x18
No Parameters
No Return value

0x1C: Unknown command

The function of this command is unknown.
Parameters:
[0x10]: Unknown input parameter



No Return value

0x1D: Unknown command

The function of this command is unknown.
Parameters:
[0x18]: 0x01 – this likely signals that a single byte is transferred
[0x1C]: 0x30, 0x66 – Different fixed values are sent as parameter
No Return value

Flash Physical Interface
After I had understood most of the Flash interface and the Commands, I got interested in how those 
commands and parameters actually map to the physical NAND flash chips on the board. I found out
that the commands the firmware sends to the Flash controller must get translated to completely 
different commands that are sent from the Flash controller to the NAND flash chips.
I read through the standardisation documents of the ONFI Flash standards, version 3.2, which 
define the BGA316 format: http://www.onfi.org/~/media/onfi/specs/onfi_3_2-gold.pdf?la=en 
The standard offers several options that could be used or not:
* Pin Reduction
* 16 CE_n and 32 CE_n BGA packaging
For the Pin Reduction feature (to reduce the insanely amount of traces on the PCB), the Eni and 
Enu pins are specified. If Pin Reduction would be used, those Eni pins would have to be connected 
from one package to another, but I could not find any such connections when I probed the PCB. So 
I believe that Pin reduction is not used.
Regarding 16 vs. 32 CE_n pins, the voltage levels of the pins gave the clear picture, that there are  
only 16 CE_n pins.
So we have a 16 CE_n BGA without Pin Reduction. The disadvantage of this option is that it seems 
to be completely symmetrical, so you cannot know which side is which side, and whether the chip 
is upside down, or not. So you have to be extra careful with any chip-off recovery strategies.

The next big question was, how the physical flash chips are actually addressed from the firmware. 
Since I suspected that either one of the flash chips or the traces on the PCB were broken on my 
broken SSD, I wanted to figure out how the specific chips are addressed, so that I could find out, 
which chip is actually broken.
I had the idea to try a cheap 24 Mt 8CH logic analyzer that I had bought and never used before to 
connect to the bare balls of the unpopulated Flash footprint on the PCB, try to send commands to all
the NAND chips, and measure whether the CE (Chip-Select) lines are activated to send commands 
there.
But how to connect to those tiny
little balls or pads?
The commercial options I found are
the Spider from AceLabs (that was
introduced on the market after I
started this project). 
It is designed to connect to the small
pins of a monolith SD or micro SD
card. Unfortunately it turned out to
be too small for a 2.5” SSD. (It
looked much larger on the photo)

http://www.onfi.org/~/media/onfi/specs/onfi_3_2-gold.pdf?la=en


The real professional solution from my point of view is a Flying Probe machine that is used in 
electronic factories for testing and programming. Some of the companies that produce such 
machines are Acculogic, Seica, Spea.

At first I tried with sharp probes. That worked well for just probing a voltage level, but holding the 
probes for minutes in your hand while controlling the computer and looking at the screen-results at 
the same time didn’t quite work. So I developed several solutions:
To connect to the BGA balls, I first tried soldering enameled copper wire to the BGA balls. What 
surprised me was that the BGA balls have a very low melting point (less than 200°C I think, I 
wasn’t able to measure it exactly), and the other solder tin on the larger SMD pads had a very high 
melting point (or perhaps the heat just spread too much, I don’t know). I first practiced soldering on 
the border balls, which are all unconnected. 
For the logic analyzer, I have been using PulseView from the sigrok project to interface with it.

I developed a sigrok plugin that beeps whenever a given signal changes it’s value. That way I do not
have to look on the screen anymore and can just listen to the signals on the BGA balls, and 
concentrate on probing.
Since the board of the SSD bent slightly on pressure, I built a wooden fixture and screwed the SSD  
with spacers on the board. Then I got some Micro-Probes that I could use to interface with the 
JTAG pins. Then I took a 10-Pin cable, removed the connector and spliced it up on one end, and 
used a staple gun to fixate the ends on the wood. 

With a crayon I documented which of the 8 logic analyzer channels is where.
Then I found an old wooden game of my children. I took flexible test clip pinch grippers and 
attached needles in the front, and layed those on the game, so they became my flying probes.

Then I combined both the fixture and the flying probes, and I was able to solder several copper 
wires permanently and also to directly measure individual BGA balls on demand.





Another idea I have to interface the BGA balls is special nails holder to make access easier:

It is designed so that you can put it on a BGA footprint, put nails into it, and then you have a 
connection:

This way you physically convert the small BGA balls to larger nail heads that are easier to work 
with.



For the other direction of interfacing the BGA chips in an easier way, my idea is to find a spongy 
electrically conductive material (or perhaps a flex material?) and put small balls of that material on 
PCB, so that you can then easily place the BGA chip on the adapter:
I created a video of my idea here:
http://www2.futureware.at/~philipp/ssd/BGAadapter.mp4                      
http://www2.futureware.at/~philipp/ssd/BGAadapter.avi 

           
                                      

Power management
For a long time I had trouble to use the flash interface in a reliable and predictable way. Sometimes 
it worked, sometimes it didn’t, and it took a long time to understand the various preconditions and 
failure modes. The first problem I had was that I often just got 0x20 when I read some values in the 
0x203C0000 address space. So I called this the “0x20 error”. Later on, I noticed that I cannot even 
write something there, I always get back 0x20 when it is in that state. I have setup an automated 
flash-dump test, which tried to power on the SSD, try a read command, to make sure that all tables 
are initialized and the flash interface has been used, then to halt all the cores and I tried my own 
code to dump data from the NAND flash chips. But it reproducably failed with the 0x20 error. So I 
got the idea to try to monitor a read-request, to set breakpoint directly after the flash request, since I 
assumed that the flash must be fully enabled at that point of time, and then I tried to read from the 
0x203C0000 adddress space, and there the error was gone, and I could read and write and read what
I had written in that address space. So I added some code to single-step through the firmware 
directly after the read request, to try to read from an address in the 0x203C0000 range, and to verify
whether it is 0x20 or anything else, after every single-step. And as soon as it would read 0x20, it 
would stop and tell me at which instruction it stopped. 10 Minutes later I found where the 0x20 
error happened, and instruction there was doing [0x20500004] := 0x300 , and it was part of a 
function that wrote various values and bits to the memory range 0x20500000 – 0x20500030. I 
searched through the firmware for other write accesses to 0x20500004 and quickly found the 
counterpart, that wrote [0x20500004] := 0x70F 
So it became clear that the firmware turns off the flash interface when it is idle, and turns it on again
when new commands arrive. This is likely to save power, and it has the downside that it slows the 
speed of the SSD, since it takes time to power up again.

http://www2.futureware.at/~philipp/ssd/BGAadapter.avi
http://www2.futureware.at/~philipp/ssd/BGAadapter.mp4


Encryption
The controllers contains a Random Number Generator which is used to generate random numbers 
for the AES keys. The RNG can be found at 0x2050e000 and it can supply up to 32 Bytes at a time!
Theoretically we could create a firmware that would provide random numbers on a SATA block 
device this way.
And the AES controller can be found at 0x20104000.
To encrypt an AES block that is located at 0x20104090 so that the result is written to 0x20104100, 
you have to write [0x20104000]:=[0x20104000] | 0x10000
To wait for the encryption/decryption to be finished you have to wait on the bit 0x100000 in the 
same register to clear.
The AES key is written to 0x20104050, the Initialisation-Vector is written to 0x20104070 in RAM. 
The keys are stored in a slightly obfuscated way in the service area in the big Flash chips, the MEX 
processor does not contain any state itself. So if your MEX controller is broken, you can replace it 
with a good one, or you could put the FLASH chips on a good donor PCB. You only have to match 
the right firmware version!
The AES modes ECB(1), CBC(2) and XTS(3) are supported by the hardware, but only XTS(3) 
seems to be used.

Encryption Control
The encryption is controlled by a ranges table, which defines which parts of the SSD is to be 
encrypted with which key. The AES core seems to support loading up to 8 different AES keys at the
same time, while up to 20 different ranges (of which 16 can be used at the same time) can use those 
8 keys. A factory new SSD seems to use 3 ranges by default:

Ranges 0x800200F4
Enabled KeySlotID LBA-Start LBA-End Size:

1 0x0 0x1D24F970 0xFFFFFFFF Big, likely unused

1 0x0 0 0x1D1C5970 250 GB → data

1 0xA 0x1D1C5970 0x1D24F970 289 MB → Shadow MBR

0 0xFF 0 0

… this table has 
18 or 20 lines

So the second entry defines which key is used for the actual user-data. If you enable/use OPAL 
encryption, this entry is split up into smaller regions (e.g. boot sector, and partitions can be 
encrypted with different keys).
The first entry uses the same AES key (since it’s the same KeySlotID), but it seems to be at the end 
of the physical flash and beyond that.
The third entry is the non-user-visible system area, which uses a different AES key. (The number 
0xA is a magic number in the code, it gets protected from the user-partitions).
The KeySlotID 0xFF means undefined.

The KeySlotID field references the actual AES keys:

KeyMaterial 0x825E14



KeySlotId Enabled Key1 Key2

0x0 1 32 Bytes AES-256 Key 32 Bytes AES-256 Key

0x1 0 0 0

0x2 0 0 0

0x3 0 0 0

0x4 0 0 0

0x5 0 0 0

0x6 0 0 0

0x7 0 0 0

0x8 0 0 0

0x9 0 0 0

0xA 1 32 Bytes AES-256 Key 32 Bytes AES-256 Key

(Why are there always two 32-Byte long AES-256 keys? Because the XTS mode needs 2 keys)
Then there is a table that references the ranges:

RangeIdArray 0x800200E4
0 1 2 3 4 5 .. 14 15

00 01 FF FF FF FF ... FF 02

PHY Core: ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

20100380

20100384

20100340

The first (0) references Range 0, which is the big chunk at the end of the SSD.
The second (1) references Range 1, which is the user-data.
Then there are 13 empty ranges (2..14).
The last (15) references Range 2, which is the System-Area.
These 16 positions are then referencing PHY addresses, where most likely the KeySlotId and the 
LBA-Start and LBA-End are stored into the PHY.

So the encryption core can (when given an LBA address) decide in hardware, which of the 8 AES 
keys that are loaded are to be used for encryption/decryption.

Additionally there are 2 KeySlotArrays with 8 Byte values each, which are referencing the 
KeySlots as well:

FirstKeySlotArray 0x800200D4
10 0 FF FF FF FF FF FF

SecondKeySlotArray 0x800200CC
? ? ? ? ? ? ? ?
It’s not clear to me yet what those 2 are needed for, but the code is somewhat shoveling around and 
comparing those two.



So the encryption/decryption of the data happens transparently on the way from SATA<→RAM, 
and likely only gets turned on/off by the SATA command handlers, and it must get fed with the 
requested LBA. The actual encryption is done by the hardware then, and the firmware never sees 
the user data in plaintext.

Since the the encryption is effectively managed by the hardware, the lifecycles of the aboves tables 
in RAM is very short: In the firmware, those tables are initialized with 0x00, 0xFF, during powerup 
the tables are filled from structures from the NAND flash, then the necessary values are written to 
the encryption PHY, and then the tables are overwritten with zeros again, since during normal 
operation the tables are not needed. If the SSD receives unlock/lock or other keymanagement 
functions through SATA, those tables are likely recreated again in RAM and cleared again as soon 
as the command is finished.

Results
I analyzed parts of the initialization code that is executed during the powerup of the SSD.
I found several places where it reads values from memory, where different values were read on the 
GOOD and the BAD SSD. So I tried to change those values in memory on the BAD SSD to the 
values that the GOOD SSD had. 
Unfortunately I haven’t found a way yet to debug the initialization during bootup, so I only had the 
possibility to boot the SSD up normally, then start debugging, halting all cores to prevent any 
problems, (both the cores interfering with my tests and me interfering with what the other cores are 
doing which could cause them to create even more problems in the SSD)
But it turned out that some of those values in memory are read-only, some actually get their values 
from the initialization, and some do not have the wanted effect. But I haven’t analyzed them all yet, 
there are more memory places to come.
To overcome the problem with this read-only memory and with the problem that I cannot debug the 
initialization process at the powerup, the idea is to analyze the firmware updating procedure, to find 
a way to change the first 4 bytes of the firmware to be an endless loop, then I could power it up, 
start the debugger, halt the core, change the 4 bytes back again to the normal instruction and then 
continue single-stepping the initialization.

Diagnostics
To analyze a non-starting SSD and figure out what exactly the problem is, I developed an analysis 
tool, which connects through JTAG to the SSD, reads a few memory values, and provides an 
automatic diagnosis of the values. I guess that it should work for other firmware versions, and it 
should be portable to other SSDs from Samsung, and perhaps it could be made useful for other 
SSDs as well.
You can get it at https://github.com/thesourcerer8/SSDdiag/ 
Please post the results of running it with your SSD as issues on the GitHub page.

Bugs
At the beginning of the project, I was told the story of a different SSD/HDD vendor who had a bug 
in the firmware where the Grown-Defect-List had a Buffer-Overflow which wasn’t a problem as 
long as there weren’t too many bad sectors, but as soon as there were too many bad sectors, it 
would overwrite some other vital data areas on the memory, and then the whole SSD/HDD could 
not start anymore, and millions of drives were affected. 

https://github.com/thesourcerer8/SSDdiag/


It could be this story: http://www.msfn.org/board/topic/128807-the-solution-for-seagate-720011-
hdds/ 
So I was looking specifically for memory corruption, heap spraying and off-by-one errors in the 
code. (I would need more memory dumps of different SSDs to be able to spot them in the data)
And surprisingly to me, I found not just one but several off-by-one errors in the code.
The SSD 840 Pro datasheet claims that there should be 32 NCQ slots (https://en.wikipedia.org/wiki/
Native_Command_Queuing), but the code first compares whether it is <32, then it acts on the data, 
and only afterwards it branches depending on the comparison done earlier, so effectively there are 
33 NCQ slots. It could be that the 33rd NCQ slot is written over some memory that should belong to 
something else, I don’t know.
Several other similar off-by-one errors were found, which brought me to the idea that the following 
could be the underlying problem in the Ansi C sourcecode of the firmware:

int i=0;

while(i++<32) mem[i]=0;

Looks right, isn’t it? And what about this:

while(++i<32) mem[i]=0;

There is one case where the off-by-one element in a memset() is pointing to unmapped memory 
addresses, which would resulted in a Data Abort when my single-stepper pre-fetched that memory, 
so I first thought that there is a bug in my single-stepper, but later it turned out to be an off-by-one 
in the firmware. Interestingly, even later I found that there is actually a protection mechanism 
against that kind of off-by-one element in the code that I overlooked earlier, but it does not protect 
enough in all cases.

All the CPU cores initialize various memory regions during the initialisation routine

MEX2 (the second ARM core) does the following in the initialisation:

for(i=0x80061858; i<0x80060000;++i) *i=0;

Since the end address is before the start address, this should initialize memory, but it doesn‘t!

The same problem exists in the initialisation code of 2 similar ARM cores, MEX2 and MEX3, each 
with their own address ranges.

Either the 2 addresses are exchanged, or one of the addresses is wrong.

Therefore some RAM that should be initialized isn‘t and potentially contains garbage values.

Another bug is that the Controller counts the milliseconds in a 32-Bit register, which will overflow 
every 49.71 days. (Windows 95 and Windows 98 had the same problem and crashed shortly after 
the overflow) I do not fully understand the codepaths around it, but it seems that it can crash by 
sleeping too long after an overflow. Another problem is that the machine-hours in the SMART 
report might be wrongly calculated with such an overflow, but I haven’t checked that code yet.

                                                                                               

https://en.wikipedia.org/wiki/Native_Command_Queuing
https://en.wikipedia.org/wiki/Native_Command_Queuing
http://www.msfn.org/board/topic/128807-the-solution-for-seagate-720011-hdds/
http://www.msfn.org/board/topic/128807-the-solution-for-seagate-720011-hdds/


I have reported the bugs I have found to Samsung, but I never got any qualified answer from them.

Your help is needed
Ok, so much for what I did, now about what you can help:

Please visit the reverse engineering platform, take a look at the traces, and when you understand 
something, please add your comments there:
http://www2.futureware.at/cgi-bin/ssd/logs 
It seems that nobody did that yet, so I am thinking about closing the comment system again.

One helpful thing for reverse engineering has been numerology: If something is done 3 times, it is 
most likely for the 3 CPU cores, if something is done 4 or 8 times, it is most likely for the 8 
Channels to Flash (The 8 channels contain AES (encryption/decryption), DMA (direct memory 
access), ECC (error correction code) and Flash interfacing in a pipeline, and interestingly, they are 
grouped in 2 groups of 4 channels each), 16 is likely the number of hashtable entries, but each of 
the 8 channels also has something 16 times, if something is done 32/33 times it is most likely done 
for NCQ SATA request buffers. 64 seems to be SATA response buffers. If something is done 80 
times, it is related to something that is done for every channel.

The firmware contains strings like “<MESSAGE>%s</MESSAGE>”  which are a sign that the 
firmware was developed in the C programming language. I was not able to identify the C standard 
library. Perhaps anyone has an idea, which C standard library is used? The compiler seems to be a 
GCC variant, it is detected by RetDec as “android-ndk-r8 (4.4.3 armv5te, armv7a(arm-linux-
androideabi-gcc))”
The firmware does not seem to contain a complete C library, I only found memset, bzero, memcpy, 
sprintf in it. I found an interesting malloc function, which provides aligned allocation. 
Unfortunately, it always allocates the space necessary for alignment, and later on it only allocates 
space for the actual data when there is enough space left. This could be seen as a memory leak, but 
it unlikely is a real problem. So theoretically, if you called that function once, asking to allocate 1 
Byte that is 1GB aligned, it would first allocate the space needed for aligning it to 1 GB, most likely
exceeding the buffer by far, afterwards it would fail allocating 1 Byte, but the original alignment 
would cause any further allocation tries to fail.

If you have any ideas what else I could try out, please let me know.

I will update this document in the future, if I find out any new things.

Error Handling
There is one function that is called from a huge amount of other functions, therefore I think it is a 
generic error handler. It takes the calling address as the last parameter, it likely logs all the 
timestamp (in machine hours, since there is no RTC (Real-Time-Clock)), and the location of the 

http://www2.futureware.at/~philipp/ssd/
http://www2.futureware.at/cgi-bin/ssd/logs


error to Flash. After every call to this error handler I saw a while(1); endless loop to prevent any 
further execution of the firmware after the error. Interestingly my SSD does not end up in such an 
error handler, but it seems to wait for inter-core-communication instead.                                             

 

Easier tasks
* Please analyze the 2 command-parsers, two for the SATA commands (one in SAFE mode, one in 
normal mode). (The UART debug commands are fully analyzed). Which commands are available, 
how are they called, which parameters do they have, what do they do? Which commands are 
dangerous (writing stuff), which are read-only? I found a debugging routine which generates XML 
about various things, it seems that it is called by the generic error handler, but I couldn’t find out yet
where it puts its output to. It seems that some of those exception-handling routines are never called 
by the firmware.

* Search for a way to permanently write to the various memories (perhaps the method can be found 
in the firmware update command 0x92, perhaps it can be found in the UART debug commands. I 
think the way to go here is to modify the firmware-update check through JTAG or UART rw 
commands to ignore any tampering with the firmware, to then load a modified firmware.

* Search for memory patterns that look like a Grown-Defect-List (as if I knew how it looks like)

* Search for the wear-leveling algorithm and any related data structures (I also dont have any good 
idea how that looks like yet, I am not sure whether I could recognize it if I saw it)

* What does mex3 do with the read accesses to the 0x8yyyyyyy memory region? Are those 
verifying the results of the ECC verification?

* Improve the sequencing algorithm, perhaps visualize it

* Identify how mex1 wakes up mex2 and mex3

Harder tasks

* Please analyze the firmware updating procedure. I would need a firmware change that has the first
4 bytes changed to an endless loop, so that I can reliably debug the initialisation of the firmware. 
My current guess is that there is a 16 or 32 bit checksum at the end of the firmware header which 
protects the whole firmware. This guess was wrong, SHA-256 is used instead. Although I dont’ 
believe in the security of elliptic curves, I doubt that there are security issues in the firmware-update
process

* Identify the various PHYs that are used in the controller. Find datasheets for potentially used 
PHYs and verify the access behaviour with the register documentation in the datasheets.
Ok, I did that, the result is a huge memory map documentation here: 
http://www2.futureware.at/~philipp/ssd/MemoryMap.pdf 

* Find a way to debug the initialisation of the SSD (I am wondering how Samsung is doing that 
without a SRST line)

http://www2.futureware.at/~philipp/ssd/MemoryMap.pdf


ARM CPU Register Documentation
ARM cores have a lot of CPU registers which can be read with the MCR instruction.

At first I tried to read them manually, but I soon gave up and automated it:

I copied the ARM documentation, and wrote a script that parses all the example read commands 
from the official ARM documentation website, executed those read commands through OpenOCD 
against all 3 cores, and then writing out the whole documentation with annotations of the actual 
values, down to the bitfields. In case the 3 cores would have provided different values, the script 
would have explained that, but it unexpectedly turned out that all 3 cores had the same values. 
(There is one register that should contain the Core-ID which I would have expected to be different 
(perhaps that’s a design issue?), and I expected references to the CoreSight modules, but I found 
none)

http://www2.futureware.at/~philipp/ssd/cortexr4regsgood.html 

So in the end you can read your individualized ARM documentation that documents your specific 
chip, and you don’t have to switch between the documentation and calculate the bit fields by hand 
anymore. I guess that this tool might be valuable for a lot of ARM developers...

http://www2.futureware.at/~philipp/ssd/cortexr4regs.pl 
The only problem I found out later is that the MPU registers are actually a whole array, and you 
need to initialize one register with the region index first before reading/writing the other registers, 
so my tool only provides the values for the currently set index.

http://www2.futureware.at/~philipp/ssd/cortexr4regs.pl
http://www2.futureware.at/~philipp/ssd/cortexr4regsgood.html


Appendix
The following is a list of references and notes, and documentation snippets I collected

References
Some more links that might be interesting:
http://blog.acelaboratory.com/pc-3000-ssd-samsung-family.html 
http://www.acelaboratory.com/catalog/vosstanovlenie-dannih-sdd-flash.php 
https://www.reddit.com/r/ReverseEngineering/comments/2uwhls/
samsung_ssd_firmware_deobfuscation_utility/ 
https://github.com/radare/radare2/issues/3190 
https://github.com/arduino/OpenOCD/blob/master/tcl/interface/sysfsgpio-raspberrypi.cfg 
AHCI - OSDev Wiki 
SSD 
fmadio | Recover Bricked SSD with JTAG 
False Positive Strings · Issue #3190 · radare/radare2 
Novena headers to linux GPIO mappings - Studio Kousagi Wiki 
Definitive GPIO guide - Studio Kousagi Wiki 
cheatsheets/radare2.md at master · pwntester/cheatsheets 
ARM Information Center 
BeagleBoardOpenOCD - eLinux.org 
openOCD/coresight-trace.txt at master · kevinmehall/openOCD 
raspberrypi/armjtag/rpi2 at master · dwelch67/raspberrypi 
Telecomm.& Memory Ic Supplier,Original Condition! Offer Sample K90kgy8s7m-cck0 - Buy 
K90kgy8s7m-cck0,Samsung Memory Ic,Computer Ic Product on Alibaba.com 
OpenOCD - Open On-Chip Debugger / Mailing Lists 
boot - What is the booting process for ARM? - Stack Overflow 
ARM CoreSight Architecture Specification v2.0 - IHI0029D_coresight_architecture_spec_v2_0.pdf
google/binnavi: BinNavi is a binary analysis IDE that allows to inspect, navigate, edit and annotate 
control flow graphs and call graphs of disassembled code. 
depcb/screenshot.png at master · unixdj/depcb 
pyOCD/cmsis_dap_core.py at master · mbedmicro/pyOCD 
mongodb-labs/disasm: Interactive Disassembler GUI 
BinaryAnalysisPlatform/qira: QEMU Interactive Runtime Analyser 
Hard Disk Firmware Hacking (Part 1) | MalwareTech 
SSD firmware hacking. 
HDD GURU FORUMS • View topic - How to find TRST & SRST for JTAG? 
ARM Processors: How to debug: CoreSight basics ... | ARM Connected Community 
The HDD Oracle. • View topic - Datasheets for SSD and Flash Drive ICs 
Microsoft Word - dg_sata_ip_appnote1_en.doc - dg_sata_ip_appnote1_en.pdf 
IDLE - serialata10a.pdf 
Welcome to the Python Mapper documentation! — Python Mapper documentation 
SATA Storage Technology - SATA Storage Technology.pdf 
Free ip cores - ASICS.ws - Your Partner for IP Cores, ASIC/FPGA Design, Synthesis and 
14.pdf 
HDD GURU FORUMS • View topic - STUart - Seagate sectors over UART driver 
HDD Serial Commander 
The HDD Oracle. • View topic - HDDs / PCBs Suppliers list : 

http://www.hddoracle.com/viewtopic.php?f=57&t=589
http://www.hddserialcommander.com/
http://forum.hddguru.com/viewtopic.php?f=13&t=34056&view=unread#unread
http://www.econinfosec.org/archive/weis2006/docs/14.pdf
http://asics.ws/v6/free-ip-cores/#
https://www.mindshare.com/files/ebooks/SATA%20Storage%20Technology.pdf
http://danifold.net/mapper/index.html
http://www.ece.umd.edu/courses/enee759h.S2003/references/serialata10a.pdf
http://www.dgway.com/products/IP/SATA-IP/dg_sata_ip_appnote1_en.pdf
http://www.hddoracle.com/viewtopic.php?f=100&t=1577
https://community.arm.com/groups/processors/blog/2015/07/13/how-to-debug-coresight-basics-part-3
http://forum.hddguru.com/viewtopic.php?f=13&t=31611&p=219594&hilit=Samsung+SSD#p219594
http://forum.hddguru.com/viewtopic.php?f=13&t=31127
https://www.malwaretech.com/2015/04/hard-disk-firmware-hacking-part-1.html
https://github.com/BinaryAnalysisPlatform/qira
https://github.com/mongodb-labs/disasm
https://github.com/mbedmicro/pyOCD/blob/master/pyOCD/pyDAPAccess/cmsis_dap_core.py
https://github.com/unixdj/depcb/blob/master/example/screenshot.png
https://github.com/google/binnavi
https://github.com/google/binnavi
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0029d/IHI0029D_coresight_architecture_spec_v2_0.pdf
http://stackoverflow.com/questions/6139952/what-is-the-booting-process-for-arm
https://sourceforge.net/p/openocd/mailman/message/28336819/
https://www.alibaba.com/product-detail/telecomm-memory-IC-supplier-original-condition_60282701817.html
https://www.alibaba.com/product-detail/telecomm-memory-IC-supplier-original-condition_60282701817.html
https://github.com/dwelch67/raspberrypi/tree/master/armjtag/rpi2
https://github.com/kevinmehall/openOCD/blob/master/contrib/coresight-trace.txt
http://elinux.org/BeagleBoardOpenOCD
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0316d/Chdhbffe.html
https://github.com/pwntester/cheatsheets/blob/master/radare2.md
https://www.kosagi.com/w/index.php?title=Definitive_GPIO_guide
https://www.kosagi.com/w/index.php?title=Novena_headers_to_linux_GPIO_mappings
https://github.com/radare/radare2/issues/3190
http://fmad.io/blog-ssd-bricked-restore.html
http://wiki.osdev.org/AHCI
https://github.com/arduino/OpenOCD/blob/master/tcl/interface/sysfsgpio-raspberrypi.cfg
https://github.com/radare/radare2/issues/3190
https://www.reddit.com/r/ReverseEngineering/comments/2uwhls/samsung_ssd_firmware_deobfuscation_utility/
https://www.reddit.com/r/ReverseEngineering/comments/2uwhls/samsung_ssd_firmware_deobfuscation_utility/
http://www.acelaboratory.com/catalog/vosstanovlenie-dannih-sdd-flash.php
http://blog.acelaboratory.com/pc-3000-ssd-samsung-family.html


radare/radeco: radare decompiler tool based on radeco-lib 
Screenshots - SD Computing Service 

OPENOCD Commands
drscan     # not necessary
dump_image <file> <address> <size>  
halt 
reset halt
soft_reset_halt
resume
step 
poll
reg
armv4_5 core_state   
armv4_5 reg  
cortex_a8 cache_info  
dap apid  
dap apsel 
dap apsel 0
dap apsel 1
dap apsel 2
dap apsel 3
dap baseaddr 
dap info   
dap info 0
dap info 1
dap info 2
dap info 3
arm disassemble 0x80e88158 10
bp 0x80e88160 4 hw
mdw 0   (memory read word)
#mww 0x2020001C 0x10000 (memory write word
nand probe 0
nand list
nand dump 0 voltcraft_dso-3062c_nand_dump_normal.dd 0 0x4000000

set _TARGETNAME $_CHIPNAME.cpu.0
target create $_TARGETNAME cortex_a -chain-position $_CHIPNAME.dap -coreid 0 -dbgbase 
0x80010000
set _TARGETNAME $_CHIPNAME.cpu.1
target create $_TARGETNAME cortex_a -chain-position $_CHIPNAME.dap -coreid 1 -dbgbase 
0x80012000
set _TARGETNAME $_CHIPNAME.cpu.2
target create $_TARGETNAME cortex_a -chain-position $_CHIPNAME.dap -coreid 2 -dbgbase 
0x80014000

http://www.sdcomputingservice.com/hddsupertool/screenshots
https://github.com/radare/radeco


GDB Commands:
monitor scan_chain 
info registers
p/x $pc 
x/i $pc
x

ARM ISA:
This is a list of the ARM instructions and and a short description what they do. Those instructions 
can be enhanced with conditional argument, for example: B (Branch)+EQ (Equal)=BEQ (Branch if 
Equal), or STR (Store)+EQ (Equal)=STREQ (Store if Equal)
ADC Add with carry Rd: = Rn + Op2 + Carry
ADD Add Rd: = Rn + Op2
AND AND Rd: = Rn AND Op2
B Branch R15: = address
BIC Bit clear Rd: = Rn AND NOT Op2
BL Branch with link R14: = R15, R15: = address
BX Branch and exchange R15: = Rn,
T bit: = Rn[0]
CDP Coprocessor data processing (coprocessor-specific)
CMN Compare negative CPSR flags: = Rn + Op2
CMP Compare CPSR flags: = Rn - Op2
EOR Exclusive OR Rd: = (Rn AND NOT Op2)
OR (op2 AND NOT Rn)
LDC Load coprocessor from memory Coprocessor load
LDM Load multiple registers Stack manipulation (Pop)
LDR Load register from memory Rd: = (address)
MCR Move CPU register to coprocessor register cRn: = rRn {<op>cRm}
MLA Multiply accumulate Rd: = (Rm * Rs) + Rn
MOV Move register or constant Rd: = Op2
MRC Move from coprocessor register to CPU register Rn: = cRn {<op>cRm}
MRS Move PSR status/flags to register Rn: = PSR
MSR Move register to PSR status/flags PSR: = Rm
MUL Multiply
MVN Move negative register Rd: = 0xFFFFFFFF EOR Op2
ORR OR Rd: = Rn OR Op2
RSB Reverse subtract Rd: = Op2 - Rn
RSC Reverse subtract with carry Rd: = Op2 - Rn-1 + Carry
SBC Subtract with carry Rd: = Rn - Op2-1 + Carry
STC Store coprocessor register to memory Address: = CRn
STM Store multiple Stack manipulation (push)
STR Store register to memory <address>: = Rd
SUB Subtract Rd: = Rn - Op2
SWI Software Interrupt OS call
SWP Swap register with memory Rd: = [Rn], [Rn] := Rm
TEQ Test bit-wise equality CPSR flags: = Rn EOR Op2
TST Test bits CPSR flags: = Rn AND Op2

THUMB ISA:



ADC Add with carry V – V
ADD Add V V V (1)
AND AND V – V
ASR Arithmetic shift right V – V
B Unconditional branch V – –
Bxx Conditional branch V – –
BIC Bit clear V – V
BL Branch and link V – –
BX Branch and exchange V V –
CMN Compare negative V – V
CMP Compare V V V
EOR EOR V – V
LDMIA Load multiple V – –
LDR Load word V – –
LDRB Load byte V – –
LDRH Load half-word V – –
LSL Logical shift left V – V
LDSB Load sign-extended byte V – –
LDSH Load sign-extended half-word V – –
LSR Logical shift right V – V
MOV Move register V V V (2)
MUL Multiply V – V
MVN Move negative register V – V
NEG Negate V – V
ORR OR V – V
POP Pop registers V – –
PUSH Push registers V – –
POR Rotate right V – V
SBC Subtract with carry V – V
STMIA Store multiple V – –
STR Store word V – –
STRB Store byte V – –
STRH Store half-word V – –
SWI Software interrupt – – –
SUB Subtract V – V
TST Test bits V – V

TODOs

Implement [PC, #123] recognition for singlestepper

Maximum JTAG Scan Interface Timing: 12 MHz

Serial  Number Identification:
Good=S1DFNEAD802015A
Bad =S1DBNSBFA80438H

The address 0x40825088 is only reachable for mex1, not for mex2 or mex3. Why?



ARM Semihosting!!!

arm7_9 dbgrq [enable|disable]

goodlogs/debugmex1init.log:0x0000007c->0x00000080 ARM Supervisor   0xf57ff04f  
UNDEFINED INSTRUCTION svcmi 0xf07ff5
goodlogs/debugmex1init.log:0x00000084->0x00000088 ARM Supervisor   0xf57ff06f  
UNDEFINED INSTRUCTION svcvs 0xf07ff5
goodlogs/debugmexall.log:  0x00000078                              0xf57ff04f  UNDEFINED 
INSTRUCTION svcmi 0xf07ff5
goodlogs/debugmexall.log:  0x00000080                              0xf57ff06f  UNDEFINED 
INSTRUCTION svcvs 0xf07ff5
goodlogs/debugmex1init.log:0x000001d0->0x000001d4 ARM Supervisor   0xf57ff04f  
UNDEFINED INSTRUCTION svcmi 0xf07ff5
goodlogs/debugmex1init.log:0x000001d8->0x000001dc ARM Supervisor   0xf57ff06f  
UNDEFINED INSTRUCTION svcvs 0xf07ff5
                           0x0001b69e->0x0000e918 Thumb Supervisor 0xf7f3e93c  UNDEFINED 
OPCODE      stcllo p3, c15, [sb], 0x3dc
goodlogs/debugmex3.log:    0x00018648->0x000192b4 Thumb Supervisor 0xf000ee34  
UNDEFINED OPCODE      lsls r0, r6, 3 ; adds r4, 0xee
rasm2 -aarm -b16 -d 0xf000ee34
rasm2 -aarm -b32 -d 0xf57ff04f
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