
FireWire Memory Dump of a Windows XP Computer:

A Forensic Approach

Antonio Martin

tmemail@gmail.com

Copyright © 2007

Introduction

In a forensic investigation, while collecting evidence, Anzaldua, Godwin, Volonino state the best

practice is to unplug a computer or remove a laptop’s battery, so as to preserve the exact contents of

a disk without introducing artifacts, changes to the system, for later investigations.
[1]

 It is critical the

original contents of a system, as found, are not altered. Using the operating system shut down alters

log and temp file states; furthermore, a shutdown may trigger a logic bomb and a possible data

wipe. This approach has a problem; it does not preserve active memory. A portion of the active

memory can be found in the remnants of the operating system swap file, but this is an incomplete

picture. There exists a desire to find a means to collect a forensic image of memory without

compromising an investigation’s integrity.

 2

Network Based, Active Data Collection

As the field of digital forensics progresses, new means of evidence collection emerge. The current

“best practice” allows for In situ, on sight, live data collection from running systems; a snapshot

capture of all the information in memory. While desirable, it results in a series of problems that

have not been addressed. Is this a case of law and forensic practitioners being technologically a few

steps behind?

One example of the current means of network based, live data collection can be found in Guidance

Software’s Encase® Field Intelligence Model (EFIM); other software packages behave similarly.

EFIM allows a forensics investigator to connect to a target machine by Ethernet, push a small

program referred to as a “servlet” and capture the system’s live memory and hard drive. EnCase

FIM is capable of targetting “Windows 95/ 98/

NT/ 2000/ XP/ 2003 Server, Linux Kernel 2.4 and

above, Solaris 8/9 both 32 & 64 bit, AIX, OSX.”
[2]

At first glance, as long as the artifacts that are

introduced by the “servlet” are well understood, the

evidence collected should be trustable and

admissible. The tool allows investigators to image

running systems and servers while not disrupting a

company’s operations. Furthermore, it can be used

to find and target machines on a network

(wirelessly?), without the owner’s knowledge.

Figure 1. From www.guidancesoftware.com

EnCase’s approach presents at least the following issues:

• A “servlet” installation introduces artifacts on the target system. Claims that the impacts are “well

documented and known” are interesting; it is impossible to test and document all possible hardware and

software configurations and how their interactions will affect the impacts of installation and operation.

• A “servlet” is susceptible to attack since malicious software running on the target can identify and stop it

or trigger a logic bomb. This becomes more of an issue since the full Encase product suite is available

from torrents and warez sites allowing criminals to dissect and build defenses. While the “servlets” can

be updated and altered, it will require investigators to constantly update and document changes to their

investigation test stands and run the risk of loosing all data if a logic bomb is triggered. Simple file

 3

modification of the “servlet” might not work to prevent detections as data stream and behavior analysis

can quickly identify potential alterations/updates.

• It is possible the “servlet” could be maliciously submitted to malware and virus protection houses. The

code would be inspected and signature detection profiles pushed out to millions of computers world

wide. Thus a target with active, running virus protection might automatically stop a live forensics

investigation.

• By far, the most critical issue: Any targeted system is an unknown quantity with little insight as to what

is or is not running. If a system is infected, it is impossible to trust any information gathered through the

operating system because stealth root kits are difficult, if not impossible to detect. Rootkits have

advanced considerably and data from an unknown, possibly infected system cannot be trusted.
[3, 4]

 A

kernel mode rootkit called “Shadow Walker,” available since summer of 05, is such a program; it hides

itself and other processes within memory by subverting the windows virtual memory management. Any

process from within the CPU attempting to view memory will be fooled.

”Unfortunately, because all live response tools of which we are aware run directly on a potentially

compromised system, they rely on the underlying operating system, …. Even tools which attempt to

determine the integrity of the operating system may be fooled if the attacker has perfect knowledge of

the tool and control of the system before it is installed. … it is impossible to even know if the live

response tool itself has been run in an unmodified way. This means that, even if the tool itself has

been verified, the executing instance of that tool may be untrustworthy.”
[Butler, Sparks 4]

It is possible that a rootkit could be discovered on analysis of the hard drive copy, if the rootkit

allowed the drive section to be read. The rootkit might not exist in the drive, but could hide its image in

the BIOS or a video card ROM.
[3]

The process and end product of gathering forensic evidence is supposed to be of the utmost quality

and integrity, but this approach to live evidence collection is flawed and approaches negligence if it makes

such claims. Ways to subvert and bypass such methods are already used and well documented. While this

can be a useful tool for information gathering, this form of forensic evidence collection should not be

admissible in a court of law where integrity of data is of the utmost concern because it cannot be guaranteed.

 4

Firewire

Firewire® is a bus technology designed for point to point connections between devices. It

was developed by Apple in 1986 and was standardized to the IEEE 1394 specification in 1995.
[5]

Firewire, like many other devices in today’s computer architecture, utilizes Direct Memory Access

(DMA) to improve data transfers.

Figure 2: Firewire, using DMA, bypasses the CPU and running operating system.

A firewire device can read (and write) to a computer’s main memory by accessing a

system’s DMA controller, while the operating system, be it Windows, Mac OS, Linux, a Multiple

Independent Levels of Security kernel, etc., is oblivious to the event. By pulling a copy of memory

through firewire, the target CPU and operating system are bypassed as are any infections, triggers or

traps. This is not a bug but exactly how DMA and PCI devices, like Firewire, were designed to

operate.

 5

Figure 3: Modified from IO class notes, Dr Szabolcs Mikulas, School of Computer Science and Information Systems,

Birkbeck College, Chapter 5, Input / Output [6]

DMA allows memory transfers between devices and processes to take place while a

computer’s CPU performs other tasks. Figure 3:

1. The CPU/operating system programs the DMA controller to instruct a Firewire device to read a

portion of memory; the CPU/operating system is now free to work on other tasks.

2. The DMA controller sends a message to the Firewire controller, informing it of the read request

and the location and length in memory.

3. The Firewire device negotiate control of the PCI bus and reads the memory location specified

and once completed,

4. Informs the DMA controller.

5. Finally, the DMA controller triggers an interrupt, informing the CPU the read has completed.

It should be noted that devices are not limited to only reading/writing to the memory address

specified by the operating system. Firewire and other DMA bus master devices act independently of

the CPU; the CPU need not initiate the transaction. A firewire device can program the DMA

controller and set up its own reads and writes, as per the PCI and IEEE 1394 specifications.

“Hit by a Bus: Physical Access Attacks with Firewire”

At PacSec in November of 2005, Maximillian Dornsief presented a paper, “0wned by an

iPod” where he demonstrated how a firewire device, utilizing DMA, can read/write active memory

within a Mac, BSD or Linux machine.
[7]

 At Ruxcon 2006, Adam Boileau (aka Metlstorm) from

Security-Assessment.com presented “Hit By A Bus: Physical Access Attacks with Firewire” where

he extended prior works, enabling the targeting of a Windows XP machine. Utilizing a Linux box

 6

with firewire support, and a set of tools for enabling the interface, he revealed several hacks using

live memory reading and writing targeted against Windows XP.

• Reading over firewire the entirety of the target’s memory and saving it to disk without altering

the target’s state.

• Locating and over writing a memory address containing the graphical identification and

authentication library (msgina.dll) allowing the password on a locked Windows XP machine to

be bypassed.

• Pushing to the target computer and starting a process without the process existing on the target

hard drive.

• Recovering the last sixteen bytes from the keyboard buffer accepted by the BIOS prior to

booting the primary operating system, useful in finding BIOS and disk encryption passwords.

Along with the presentation was released a set of Linux tools for firewire memory reading and

writing.
[8]

What is possible?

Utilizing MetlStorm’s toolset, it is possible to configure a Linux system (in this case Ubuntu 6.10)

and target an IBM Trusted Computing Module enabled Thinkpad.

Figure 4: Memory dump containing a system’s BIOS.

The firewire dump produces a large (the size of available memory) and difficult to decipher

binary image. Figure 4 shows a portion of the capture displaying the target’s BIOS in memory. This

file is difficult to understand without in-depth knowledge of the target operating system’s memory

map; thankfully there are several tools available to assist. Andreas Schuster created Process and

Thread Finder (PTFinder), a script capable of parsing firewire memory dumps.
[9]

 With this script

and a little work, the following information can be gathered:

 7

An investigator can quickly know what programs are/were running and can view the various

program/thread memories for information about activity, connections, username password

combinations, etc. Below is an example of a PTFinder list from the IBM memory dump. It dumps

all threads (and processes), their thread IDs, associated Process IDs, times created, exited,

offset/location within the memory dump (so you can go to the thread’s location and view the

information), the PDB (processes virtual address value) and Remarks (usually the process name or

system’s status).

No. Type PID TID Time created Time exited Offset PDB Remarks

---- ---- ----- ----- ------------------- ------------------- ---------- ---------- ---
 1 Thrd 0 0 0x00559320
 2 Proc 0 0x00559580 0x00039000 Idle
 3 Thrd 4 3284 2006-08-03 09:12:35 0x02a66da8
 4 Thrd 4 3496 2006-08-03 16:43:45 0x02a80da8
 5 Thrd 4 4048 2006-08-03 16:43:45 0x02a81da8
 6 Thrd 4 3088 2006-08-03 16:43:42 0x02a82da8
 7 Thrd 4 3412 2006-08-03 16:43:42 0x02a83020
 8 Thrd 4 3572 2006-08-03 16:43:42 0x02a833c8
 9 Thrd 4 2660 2006-08-03 16:43:42 0x02a83640
 10 Thrd 4 4036 2006-08-03 16:43:42 0x02a838b8
…
 649 Proc 2368 2006-07-31 16:18:15 0x0368ba98 0x16ef8000 ibmmessages.exe
 695 Proc 4 0x037c87c0 0x00039000 System

Running a grep on the list or using a flag for PTFinder can produce a list of just the

processes running that were found in the memory dump. Note the first two, red highlighted lines

(No. 55 and 247), a Back Orifice 2k configuration tool (bo2kcfg.exe) and the BO2K GUI

(bo2kgui.exe) used to control BO2K infected machines. In some cases, the residual memory from

prior processes and threads is still available; the third highlighted line (processes SynTPLre.exe,

No. 292) shows a recently exited process whose memory is still available.

No. Type PID TID Time created Time exited Offset PDB Remarks
---- ---- ---- ---- ------------------- ------------------- ---------- ---------- ---
 2 Proc 0 0x00559580 0x00039000 Idle
 55 Proc 2060 2006-08-03 16:32:39 0x02d8d020 0x24445000 bo2kcfg.exe
 148 Proc 3388 2006-08-03 16:51:05 0x02e1c4c0 0x28659000 msmsgs.exe
 247 Proc 624 2006-08-03 16:32:41 0x02ee0020 0x17a4f000 bo2kgui.exe
 254 Proc 2392 2006-07-31 16:18:17 0x02eedda0 0x16c57000 tfswctrl.exe
 292 Proc 2156 2006-07-31 16:18:11 2006-07-31 16:18:12 0x02f2fbc0 0x14baf000 SynTPLpr.exe
 293 Proc 2056 2006-07-31 16:18:09 0x02f31800 0x1499e000 TpScrex.exe
 295 Proc 1972 2006-07-31 16:18:08 0x02f33da0 0x14597000 TPONSCR.exe
 297 Proc 2480 2006-07-31 16:18:20 0x02f38638 0x1755d000 certtool.exe
 299 Proc 2528 2006-07-31 16:18:22 0x02f3bda0 0x1789e000 pwmgr.exe
 308 Proc 724 2006-07-31 16:18:06 0x02f4c608 0x1408c000 QCWLICON.EXE
 321 Proc 968 2006-07-31 16:18:04 0x02f59620 0x13d54000 TPHKMGR.exe
 329 Proc 1804 2006-07-31 16:17:53 0x02f619e0 0x1323a000 explorer.exe
 344 Proc 2588 2006-07-31 16:18:22 0x02f77488 0x17ead000 ccApp.exe
 349 Proc 224 2006-07-31 16:15:10 0x02f7d630 0x0e557000 alg.exe
 362 Proc 1904 2006-07-31 16:15:08 0x02f8ada0 0x0db41000 SymWSC.exe
 371 Proc 1844 2006-07-31 16:15:07 0x02f96da0 0x0d939000 TpKmpSvc.exe
 389 Proc 1708 2006-07-31 16:15:06 0x02faf020 0x0d129000 RegSrvc.exe
 390 Proc 1744 2006-07-31 16:15:07 0x02faf800 0x0d22e000 UMGR32.EXE
 393 Proc 1688 2006-07-31 16:15:06 0x02fb4800 0x0d10b000 TssCore.exe
 406 Proc 1636 2006-07-31 16:15:06 0x02fc8da0 0x0d122000 QCONSVC.EXE
 419 Proc 896 2006-07-31 16:18:02 0x02fd8948 0x14116000 SynTPEnh.exe
 427 Proc 1592 2006-07-31 16:15:06 0x02fe2800 0x0cc1b000 uvmserv.exe
 430 Proc 1544 2006-07-31 16:15:06 0x02fe3bc0 0x0ce16000 ati2evxx.exe
 439 Proc 1440 2006-07-31 16:15:05 0x02feebc0 0x0cc08000 spoolsv.exe
 463 Proc 1308 2006-07-31 16:15:05 0x03003b88 0x0c1fe000 ccEvtMgr.exe
 479 Proc 1764 2006-07-31 16:18:05 0x0300cd40 0x13b76000 TP98TRAY.EXE
 485 Proc 1128 2006-07-31 16:15:04 0x03011da0 0x0c0f6000 svchost.exe
 492 Proc 976 2006-07-31 16:15:03 0x03018800 0x0bbd2000 svchost.exe

 8

 494 Proc 492 2006-07-31 16:18:02 0x0301ada0 0x13dd0000 SynTPLpr.exe
 519 Proc 1084 2006-07-31 16:15:04 0x032098b0 0x0c0f0000 svchost.exe
 523 Proc 876 2006-07-31 16:15:01 0x0320c648 0x0b79d000 svchost.exe
 535 Proc 1032 2006-07-31 16:15:04 0x0321f020 0x0bfe5000 S24EvMon.exe
 557 Proc 840 2006-07-31 16:14:58 0x03380da0 0x0b696000 ibmpmsvc.exe
 563 Proc 656 2006-07-31 16:14:57 0x033b0bc0 0x0aae0000 lsass.exe
 579 Proc 644 2006-07-31 16:14:57 0x033f29c0 0x0a9d6000 services.exe
 582 Proc 600 2006-07-31 16:14:55 0x03400da0 0x0a9b4000 winlogon.exe
 608 Proc 556 2006-07-31 16:14:48 0x034f9da0 0x09dae000 csrss.exe
 621 Proc 940 2006-07-31 16:15:02 0x03559600 0x0b9cb000 svchost.exe
 637 Proc 500 2006-07-31 16:14:40 0x035b23e0 0x08943000 smse.exe
 644 Proc 2188 2006-07-31 16:18:12 0x03680da0 0x15bfc000 AGRSMMSG.exe
 646 Proc 2348 2006-07-31 16:18:15 0x03688aa8 0x164c3000 tgcmd.exe
 647 Proc 2176 2006-07-31 16:18:12 0x036894f8 0x14976000 EzEjMnAp.Exe
 649 Proc 2368 2006-07-31 16:18:15 0x0368ba98 0x16ef8000 ibmmessages.exe
 695 Proc 4 0x037c87c0 0x00039000 System

Six hundred and ninety five threads were identified and notated in the memory dump by

PTFinder. A useful enhancement to the PTFinder tool would be the ability to save the memory

sections for the individual processes and associated threads, each stored in their own file grouped by

directory. This would allow quicker and easier examination and categorization.

Figure 5: Memory section for Windows Messenger with username and password to the account.

Opening the saved memory image file in a hex editor (WinHex used) allow an examiner to

find the memory sections pointed to by the PTFinder dump. Referencing the Windows Messenger

(msmsg.exe) process id 3388, it is possible to find all associated threads in the dump and go to those

memory offsets. Figure 5 shows an example thread 2248’s memory section that contains the

Windows Messenger’s sign-in id and password.

 9

Figure 6: Memory dump from an IBM Thinkpad with TMP, user ID and password readable.

Looking into kernel memory can reveal interesting information. Figure 6 displays a portion

of memory taken from an IBM (now Lenovo) Thinkpad with a Trusted Computing Module and

associated software. A TMP laptop is marketed offering a higher level of security over a standard

laptop by leveraging TMP protections. This structure was found in high memory and contains the

username, Dave, and password, Password11, of the person currently logged into the targeted

machine. While a TPM system is supposed to operate at a higher level of security, the reality is

much different.

The set of firewire tools for creating the memory images from MetlStorm has been added to

the FCCU GNU/Linux Forensic Boot CD and can be found at http://www.lnx4n6.be/.
[10]

Konuku’s Volatools also offers a set of tools for analyzing memory images but it appears to

not be designed for firewire dumps.
[11]

 It failed on many of the attempts to parse most information

from the file, like processes and threads but was able to find the current computer time.

E:\Python25> python volatools ident -f memoryimage.bin
 Image Name: memoryimage.bin
 Image Type: XP SP2
 VM Type: nopae
 DTB: 0x39000
 Datetime: Thu Aug 03 09:51:16 2006

It also has support to find open sockets and network connection addresses (also failed). A potentially

useful tool in analyzing Windows memory dumps.

Can it be defeated?

At the February 2007 BlackHat convention in DC, Joanna Rutkowska demonstrated how to defeat

DMA based memory gathering by utilizing a low level program, in the CPU, to rewrite a

computer’s North Bridge memory lookup table’s pointers.
[12]

 The north bridge hosts its own

memory lookup table (IO Memory Management Unit), a mapping of the addresses and layout in

main memory. By rewriting the lookup table, three possible means of preventing firewire/DMA

 10

based memory reads can be realized. The first redirects the IO back at the system bus; this causes

the computer to freeze, probably because the address range was not valid. The second redirects the

IO so that all data returned is 0xff. Lastly, a more stealth means where certain memory pages can be

hidden by removing their pointers and addressing them to other locations.

Figure 7: The operating systems get mean, remapping the DMA address table, preventing DMA.

Imaging a Live Drive by Firewire?

Apple’s computers offer a “Target Disk Mode,” providing the ability for one Mac computer to boot

off of another’s drive by a firewire connection. This leads to the possibility of not only collecting

active memory from a running system but also the contents of the hard drive.

 11

Figure 8: © COSEINC Advanced Malware Labs [x]Device and bus layout for an AMD computer. [12]

Since Firewire can access memory, it should also be possible for it to access other devices through

the DMA controller. This would require a transfer through memory and could possibly be detected

by the CPU since memory would be altered. Joanna Rutkowska demonstrated how the CPU can

remap the memory map in a DMA controller; specifically one of the cases redirected the firewire’s

(PCI device) requests back towards the PCI bus, causing the system to halt. Given a PCI device can

alter these mappings to read memory, it should be possible to find the IO device mapping and

remap the DMA controller back at a hard drive’s ports. Since the firewire and Serial ATA drives

both sit on the same PCI bus, the firewire device might be able to directly access the drive,

bypassing the need for using DMA. Current video cards are capable of transferring data directly to

each other on a PCI(Express) bus, bypassing the need to communicate back to the CPU, is it a big

step to the directly address a hard drive? Could this be another possibly powerful tool in the hands

of the forensics investigator?

Conclusion

Firewire collection presents a few problems:

• Limited availability of firewire ports on computer systems.

 12

• Plugging in a firewire device might require the operating system to activate the port, a slight

alteration (artifact) to the state of the system.

• It is possible to crash a system if not done properly; at least the hard drive state would be

preserved.

• Primarily, the concepts and tools availability for firewire memory imaging are still immature.

Active memory and live data collection are new to the field of digital forensics and still present a

multitude of issues. The desire to collect a snapshot of what is happening in a system is of great

value but this must not override the greater value of preserving the integrity of the data collected.

 13

References

[1] R. Anzaldua, J. Godwin, L. Volonino, “Computer Forensics Principles and Practices” Prentice

Hall, 2006

[2] “Field Intelligence Model Detailed Product Description”, Guidance Software, 2006

http://www.guidancesoftware.com/downloads/getpdf.aspx?fl=.pdf

[3] A. Martin, “Viral Threats - An Examination of Current and Evolving Technologies.” Boston

University Conference on Information Assurance and Cyber Security, Dec 2006

[4] J. Butler and S. Sparks, “Windows rootkits of 2005, part two” SecurityFocus, Nov 2005,

http://www.securityfocus.com/infocus/1851

[5] “Hardware & Drivers – FireWire” Developer Connection, Apple Inc., 2007

http://developer.apple.com/hardwaredrivers/firewire/index.html

[6] S. Mikulas Ph.D., “Chapter 5 – Input / Output”, Class Notes, School of Computer Science and

Information Systems, Birkbeck College, 2006

[7] M. Dornseif, “0wned by an iPod” Laboratory for Dependable Distributed Systems, PacSec

2004 http://md.hudora.de/presentations/firewire/PacSec2004.pdf

[8] A. Boileau (aka Metlstorm) “Hit By A Bus: Physical Access Attacks with Firewire” Security-

Assessment.com, Ruxcon 2006 http://www.storm.net.nz/static/files/ab_firewire_rux2k6-final.pdf

[9] A. Schuster, Process and Thread Finder. International Forensics Blog, forensikblog.de 2006

[10] C. Monniez, lnx4n6 Forensic Boot CD. The Belgian Computer Forensic Website

http://www.lnx4n6.be/

[11] N. Pertroni Jr., A Walters, “Volatools: Integrating Volatile Memory Forensics into the Digital

Investigation Process” Komoku.com 2007 http://www.komoku.com/pykvm/basic/bh-fed-07-

walters-paper.pdf

[12] J. Rutkowska, “Beyond The CPU: Defeating Hardware Based RAM Acquisition Tools”

COSEINC Advance Malware Labs, Black Hat DC 2007, Febuary 2007

1394 Open HCI, “1394 Open Host Controller Interface Specification” Release 1.1, Jan 2000

D. Anderson, T. Shanley, “PCI System Architecture” Addison-Wesley, Sept 2003

FireWire® is a registered trademark of Apple Inc.

